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ABSTRACT— Autonomous Cyber Incident Response 

(ACIR) harnesses the capabilities of cognitive security 

agents—software entities endowed with perception, 

reasoning, and learning functions—to detect, analyze, 

and mitigate cyber threats without continuous human 

oversight. This manuscript expands on an ACIR 

framework that integrates real-time telemetry 

ingestion, knowledge graph construction, hybrid 

cognitive architectures (ACT-R/SOAR), and 

reinforcement learning (RL) to orchestrate end-to-end 

incident response workflows. The extended abstract 

details the motivation, architectural components, 

experimental setup, key performance metrics, results, 

and implications for cybersecurity operations. 

Through extensive simulations emulating enterprise 

networks with cloud and on-premises assets, ACIR 

agents demonstrated a 60% reduction in mean time to 

detect (MTTD) and a 50% reduction in mean time to 

respond (MTTR) compared to traditional 

SIEM-based human workflows. False positive rates 

remained stable at approximately 5%, illustrating 

that speed improvements did not compromise 

accuracy. Importantly, RL-driven adaptation yielded 

a 30% improvement in first-shot remediation success 

across repeated attack scenarios, evidencing the 

agents’ ability to learn from past outcomes and refine 

decision policies. The architecture’s modular design 

facilitates incremental integration with existing 

security infrastructures, enabling organizations to 

adopt ACIR capabilities alongside legacy tools.  

 

Figure-1.Autonomous Cyber Incident Response Framework 
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INTRODUCTION 

Modern organizations face an ever-increasing volume, 

variety, and velocity of cyber threats driven by 

sophisticated adversaries who exploit complex attack 

chains spanning phishing, lateral movement, and data 

exfiltration phases. Traditional incident response 

paradigms rely heavily on human analysts triaging alerts 

generated by Security Information and Event 

Management (SIEM) systems and following static 

playbooks to contain and remediate threats (Giovannelli, 

2022; Sommer & Paxson, 2010). While human expertise 

remains vital, the manual nature of these processes often 

leads to protracted detection and response times, leaving 

networks exposed during critical windows. Autonomous 

Cyber Incident Response (ACIR) emerges as a 

compelling approach to supplement human analysts by 

delegating routine detection, decision making, and 

remediation tasks to cognitive security agents—software 

constructs designed to perceive environmental signals, 

reason about threat contexts, and learn optimal response 

strategies over time (Applebaum, Gross, & Harel, 2023; 

Andrade & Rocha, 2018). 

 

Figure-2.ACIR Agent Performance in Cyber Defense 

Cognitive security agents integrate principles from 

cognitive science, artificial intelligence, and 

cybersecurity to model both attacker behaviors and 

defender workflows. They employ situation awareness 

frameworks to build a holistic understanding of network 

states, leverage knowledge graphs to represent entities 

and relationships, and apply reinforcement learning to 

adapt action policies based on success or failure feedback 

(Miller & Huang, 2023; Liao & Bai, 2022). The ACIR 

architecture proposed herein consists of three primary 

layers—perception, reasoning, and action—enabling 

real-time telemetry ingestion, hybrid cognitive reasoning 

combining ACT-R and SOAR paradigms, and automated 

execution of containment, eradication, and recovery steps 

through orchestrated playbooks. 

This introduction elaborates on the research objectives: 

(1) define a cognitive agent architecture for autonomous 

incident response, (2) implement an experimental testbed 

simulating enterprise network environments with 

adversarial scenarios based on the MITRE ATT&CK 

framework, (3) evaluate performance improvements in 

terms of mean time to detect (MTTD), mean time to 

respond (MTTR), false positive rates, and learning 

adaptation scores, and (4) discuss integration pathways 

with existing SOC operations. By addressing the 

limitations of human-centric workflows—scalability 

bottlenecks, alert fatigue, and slow response cycles—

ACIR aims to enable proactive, self-learning defense 

mechanisms that keep pace with adversary evolution. The 

remainder of this manuscript provides an in-depth 

literature review, methodological details, experimental 

results, and future research directions that collectively 

advance the state of autonomous cyber defense 

(Domínguez & Martín, 2025; Silva & Santos, 2021). 

LITERATURE REVIEW 

Autonomous cyber defense has been an active research 

area for over a decade, propelled by advances in machine 

learning and cognitive modeling. Early work by Sommer 

and Paxson (2010) highlighted the potential of anomaly 
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detection models but underscored the challenges posed by 

adversarial evasion techniques. Subsequently, researchers 

began exploring reinforcement learning (RL) for adaptive 

defense strategies. Applebaum et al. (2023) demonstrated 

that tabular Q-learning agents could autonomously select 

defense actions while minimizing collateral damage, 

laying the groundwork for RL-driven incident response. 

Talbert and Shvets (2024) extended this by developing 

continuous state-action RL models that operate under 

partial observability, showing improved remediation 

efficacy in dynamic attack environments. 

While RL provides adaptive capabilities, it often lacks the 

cognitive modeling necessary to anticipate attacker tactics 

or manage complex decision hierarchies. To bridge this 

gap, cognitive security frameworks have emerged. 

Andrade and Rocha (2018) proposed mapping human 

analytic skills to agent modules, employing situation 

awareness constructs for informed decision support. Mora 

et al. (2025) applied cognitive security principles to 

counter social engineering threats, modeling user 

behavior and integrating real-time intervention strategies. 

These works leverage cognitive architectures like ACT-R 

and SOAR to simulate expert reasoning, but they typically 

focus on discrete tasks rather than end-to-end incident 

response pipelines. 

Knowledge graphs have been adopted to enrich threat 

intelligence and contextualize security events. Liao and 

Bai (2022) implemented a cybersecurity knowledge graph 

that interlinks indicators, tactics, and mitigation 

strategies, enabling agents to reason about entity 

relationships during incident analysis. Silva and Santos 

(2021) applied graph-based techniques for real-time 

threat correlation, underscoring the value of graph 

structures in detecting multi-vector attacks. 

Despite these advances, a unified ACIR system 

integrating cognitive architectures, knowledge graphs, 

and RL remains underexplored. Existing solutions often 

address isolated phases—detection, triage, or 

remediation—without providing seamless coordination 

across the incident lifecycle. Moreover, evaluations are 

frequently limited to synthetic datasets rather than 

comprehensive enterprise network simulations. This 

literature review identifies a clear research gap: the need 

for a holistic ACIR framework capable of autonomous, 

adaptive response with validated performance gains in 

realistic settings. Our work addresses this by proposing an 

integrated architecture and conducting extensive 

experiments to quantify improvements in detection, 

response, and learning adaptation (IBM Corporation, 

2022; MITRE ATT&CK®, 2025). 

METHODOLOGY 

Architecture Overview 

The ACIR framework is structured into three 

interoperable layers: 

1. Perception Layer 

o Data Sources: Collects syslogs, 

network flows, endpoint telemetry, and 

cloud audit logs. 

o Normalization: Transforms raw events 

into a unified schema, tagging entities 

(hosts, users, processes) and generating 

threat indicators (file hashes, IP 

addresses). 

o Knowledge Graph: Constructs and 

continuously updates a graph database 

where nodes represent entities and 

edges denote relationships or observed 

interactions (Zhang & Li, 2022; Liao & 

Bai, 2022). 

2. Cognitive Reasoning Layer 

o Hybrid Cognitive Engine: Integrates 

ACT-R modules for declarative 

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/


  
 
 

27  

 

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE) 

ISSN (Online): request pending 

Volume-2 Issue-1 || Jan – Mar 2026 || PP. 24-30 https://wjftcse.org/  

memory (facts about past incidents) and 

procedural memory (rules for common 

response actions). 

o Reinforcement Learning Agent: 

Implements a Deep Q-Network (DQN) 

trained in a simulated environment to 

select optimal containment and 

remediation actions based on graph 

state embeddings (Applebaum et al., 

2023; Talbert & Shvets, 2024). 

o Policy Update Mechanism: 

Leveraging reward signals—successful 

containment yields positive rewards; 

false positives and failed remediations 

incur penalties—the RL agent refines 

its policy over iterative attack 

scenarios. 

3. Action Layer 

o Automated Playbooks: Encodes 

remediation workflows (e.g., isolate 

host, kill process, rotate credentials) as 

parameterized scripts. 

o Orchestration APIs: Interfaces with 

EDR solutions, firewall controllers, and 

directory services to execute actions via 

RESTful calls. 

o Audit Logging: Records all agent 

decisions and actions for post-incident 

analysis and compliance reporting 

(Chen & Zhao, 2023). 

Experimental Testbed 

We deployed the framework within a network simulator 

replicating a medium-sized enterprise: 200 endpoints, 

Active Directory domain controllers, web servers, 

databases, and cloud VMs. Attack scenarios were scripted 

following MITRE ATT&CK techniques—phishing to 

gain initial access (T1566), privilege escalation (T1068), 

lateral movement via RDP (T1021.001), and data 

exfiltration over DNS (T1048.003). Each scenario ran 10 

iterations to evaluate learning adaptation. 

Evaluation Metrics 

• Mean Time to Detect (MTTD): Time from 

attack start to first alert flagged by agent. 

• Mean Time to Respond (MTTR): Time from 

detection to completion of containment and 

recovery. 

• False Positive Rate (FPR): Ratio of benign 

events misclassified as malicious. 

• Adaptation Score: Percentage increase in 

successful first-shot remediation across 

iterations. 

Training and Validation 

The DQN agent was trained over 1,000 simulated 

episodes with ε-greedy exploration. States were encoded 

using graph neural network embeddings capturing entity 

connectivity and threat patterns (Silva & Santos, 2021). 

Validation was conducted on a separate set of 200 

episodes with novel attack sequences to assess 

generalization. 

RESULTS 

Over 100 distinct attack scenarios executed across our 

simulated enterprise network yielded compelling 

evidence of the Autonomous Cyber Incident Response 

(ACIR) framework’s efficacy. First, agents achieved a 

mean time to detect (MTTD) of 56 seconds (SD ±12 s), 

representing a 60 percent reduction compared to the 

baseline SIEM-plus-human workflow, which recorded an 

average of 140 seconds (SD ±25 s) (Applebaum, Gross, 

& Harel, 2023; Giovannelli, 2022). This rapid detection 

arose from the perception layer’s continuous ingestion of 

multi-source telemetry—syslogs, endpoint events, and 
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network flows—normalized into a unified schema and fed 

into a dynamic knowledge graph. By correlating 

seemingly disparate events (e.g., anomalous user logins 

followed by unusual PowerShell invocations), agents 

flagged incipient compromise far more quickly than 

rule-based SIEM alerts, which often await threshold 

breaches or manual signature updates. 

In terms of mean time to respond (MTTR), ACIR agents 

delivered containment and remediation actions within an 

average of 300 seconds (SD ±30 s), a 50 percent 

improvement over the baseline’s 600 seconds (SD ±45 s) 

(Garg & Tan, 2024; Sommer & Paxson, 2010). The 

cognitive reasoning layer, combining ACT-R procedural 

rules with a Deep Q-Network, prioritized high-impact 

actions—such as isolating compromised hosts, 

terminating malicious processes, and rotating 

credentials—based on learned policies. Importantly, the 

action layer’s automated playbooks interfaced directly 

with EDR and firewall APIs, eliminating delays for 

human approval. For example, during a lateral-movement 

scenario using Pass the Hash (T1550), agents identified 

sequential authentication failures across multiple hosts 

and executed an isolation playbook within 120 seconds—

more than twice as fast as human analysts could research 

and enact the countermeasure. 

Crucially, the false positive rate (FPR) remained 

statistically equivalent between ACIR and the baseline: 

5.0 percent versus 4.5 percent (p = 0.12) (Garg & Tan, 

2024; Silva & Santos, 2021). This parity demonstrates 

that accelerated response speed did not come at the cost 

of accuracy. Agents leveraged graph-based anomaly 

detection algorithms to filter benign deviations—such as 

legitimate administrative scripts—by cross-referencing 

user roles and historical behavior patterns stored in the 

knowledge graph. Only high-confidence alerts triggered 

workflow execution, thereby avoiding SOC alert fatigue 

while maintaining stringent security standards. 

The Adaptation Score, defined as the percentage 

improvement in first-shot successful remediation across 

successive attack iterations, showed a 30 percent 

increase after ten training cycles (Talbert & Shvets, 2024; 

Applebaum et al., 2023). Initially, agents adopted 

coarse-grained responses (e.g., network-wide isolation) 

that, while effective, incurred unnecessary service 

disruptions. Over repeated exposures to the same attack 

patterns—phishing-initiated remote code execution 

sequences—agents learned to refine their actions, 

targeting only compromised nodes and specific attack 

vectors. This learning reduced collateral impact by 

40 percent and further compressed MTTR by an 

additional 20 percent in later runs. 

Collectively, these results validate the ACIR framework’s 

ability to significantly accelerate detection and response 

without inflating false positives, while its 

reinforcement-learning–based adaptation yields 

progressively more precise and minimally disruptive 

actions, demonstrating resilience and operational 

effectiveness in dynamic threat environments. 

CONCLUSION 

This evaluation confirms that Autonomous Cyber 

Incident Response, powered by cognitive security agents, 

represents a transformative shift in cybersecurity 

operations. By uniting continuous telemetry ingestion, 

knowledge-graph–driven situational awareness, hybrid 

cognitive architectures, and reinforcement-learning–

enhanced decision making, ACIR agents deliver rapid, 

accurate, and adaptive incident response that outpaces 

traditional, human-dependent workflows. MTTD 

reductions of 60 percent and MTTR improvements of 

50 percent underscore the framework’s capacity to 

neutralize threats within critical windows, thereby 

minimizing potential damage and data loss (Giovannelli, 

2022; Garg & Tan, 2024). 
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Equally important, ACIR maintains a low false positive 

rate, demonstrating that automated speed gains need not 

compromise precision. The knowledge graph’s contextual 

filtering ensures that only genuinely malicious behaviors 

prompt response actions, thus preserving SOC analyst 

trust and preventing alarm fatigue (Silva & Santos, 2021; 

Applebaum et al., 2023). Meanwhile, the observed 

30 percent improvement in first-shot remediation 

efficacy across training iterations highlights the value of 

reinforcement learning: agents progressively refine their 

policies, reducing collateral impacts and optimizing 

resource utilization (Talbert & Shvets, 2024; Liao & Bai, 

2022). 

Operationally, the ACIR framework’s modular design 

facilitates seamless integration with existing security 

stacks. Organizations can incrementally deploy 

perception components alongside their SIEM and EDR 

tools, then progressively activate cognitive and action 

layers without disrupting established processes. This 

phased adoption mitigates transition risks and maximizes 

immediate ROI, as incremental automation of detection, 

triage, and common remediation tasks quickly reduces 

analyst workloads and incident backlog. 

In conclusion, Autonomous Cyber Incident Response via 

Cognitive Security Agents stands as a promising 

paradigm for next-generation SOC operations. By rapidly 

detecting and responding to threats, maintaining high 

accuracy, and learning continuously from outcomes, 

ACIR offers a pathway to scalable, proactive, and 

intelligent cyber defense—one capable of adapting in real 

time to the ever-changing landscape of digital threats. 
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