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ABSTRACT— Autonomous Cyber Incident Response

(ACIR) harnesses the capabilities of cognitive security
agents—software entities endowed with perception,
reasoning, and learning functions—to detect, analyze,
and mitigate cyber threats without continuous human
oversight. This manuscript expands on an ACIR
framework that integrates real-time telemetry
ingestion, knowledge graph construction, hybrid
cognitive  architectures (ACT-R/SOAR), and
reinforcement learning (RL) to orchestrate end-to-end
incident response workflows. The extended abstract
details the motivation, architectural components,
experimental setup, key performance metrics, results,
and implications for cybersecurity operations.
Through extensive simulations emulating enterprise
networks with cloud and on-premises assets, ACIR
agents demonstrated a 60% reduction in mean time to
detect (MTTD) and a 50% reduction in mean time to
respond (MTTR) compared to traditional
SIEM-based human workflows. False positive rates
remained stable at approximately 5%, illustrating

that speed improvements did not compromise

accuracy. Importantly, RL-driven adaptation yielded

a 30% improvement in first-shot remediation success
across repeated attack scenarios, evidencing the
agents’ ability to learn from past outcomes and refine
decision policies. The architecture’s modular design
facilitates incremental integration with existing
security infrastructures, enabling organizations to

adopt ACIR capabilities alongside legacy tools.
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Figure-1.Autonomous Cyber Incident Response Framework
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INTRODUCTION

Modern organizations face an ever-increasing volume,
variety, and velocity of cyber threats driven by
sophisticated adversaries who exploit complex attack
chains spanning phishing, lateral movement, and data
exfiltration phases. Traditional incident response
paradigms rely heavily on human analysts triaging alerts
generated by Security Information and Event
Management (SIEM) systems and following static
playbooks to contain and remediate threats (Giovannelli,
2022; Sommer & Paxson, 2010). While human expertise
remains vital, the manual nature of these processes often
leads to protracted detection and response times, leaving
networks exposed during critical windows. Autonomous
Cyber Incident Response (ACIR) emerges as a
compelling approach to supplement human analysts by
delegating routine detection, decision making, and
remediation tasks to cognitive security agents—software
constructs designed to perceive environmental signals,
reason about threat contexts, and learn optimal response
strategies over time (Applebaum, Gross, & Harel, 2023;
Andrade & Rocha, 2018).

ACIR Agent Performance in Cyber Defense
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Figure-2.ACIR Agent Performance in Cyber Defense

Cognitive security agents integrate principles from
cognitive  science, artificial intelligence, and

cybersecurity to model both attacker behaviors and

defender workflows. They employ situation awareness
frameworks to build a holistic understanding of network
states, leverage knowledge graphs to represent entities
and relationships, and apply reinforcement learning to
adapt action policies based on success or failure feedback
(Miller & Huang, 2023; Liao & Bai, 2022). The ACIR
architecture proposed herein consists of three primary
layers—perception, reasoning, and action—enabling
real-time telemetry ingestion, hybrid cognitive reasoning
combining ACT-R and SOAR paradigms, and automated
execution of containment, eradication, and recovery steps

through orchestrated playbooks.

This introduction elaborates on the research objectives:
(1) define a cognitive agent architecture for autonomous
incident response, (2) implement an experimental testbed
simulating enterprise network environments with
adversarial scenarios based on the MITRE ATT&CK
framework, (3) evaluate performance improvements in
terms of mean time to detect (MTTD), mean time to
respond (MTTR), false positive rates, and learning
adaptation scores, and (4) discuss integration pathways
with existing SOC operations. By addressing the
limitations of human-centric workflows—scalability
bottlenecks, alert fatigue, and slow response cycles—
ACIR aims to enable proactive, self-learning defense
mechanisms that keep pace with adversary evolution. The
remainder of this manuscript provides an in-depth
literature review, methodological details, experimental
results, and future research directions that collectively
advance the state of autonomous cyber defense

(Dominguez & Martin, 2025; Silva & Santos, 2021).

LITERATURE REVIEW

Autonomous cyber defense has been an active research
area for over a decade, propelled by advances in machine
learning and cognitive modeling. Early work by Sommer

and Paxson (2010) highlighted the potential of anomaly
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detection models but underscored the challenges posed by
adversarial evasion techniques. Subsequently, researchers
began exploring reinforcement learning (RL) for adaptive
defense strategies. Applebaum et al. (2023) demonstrated
that tabular Q-learning agents could autonomously select
defense actions while minimizing collateral damage,
laying the groundwork for RL-driven incident response.
Talbert and Shvets (2024) extended this by developing
continuous state-action RL models that operate under
partial observability, showing improved remediation

efficacy in dynamic attack environments.

While RL provides adaptive capabilities, it often lacks the
cognitive modeling necessary to anticipate attacker tactics
or manage complex decision hierarchies. To bridge this
gap, cognitive security frameworks have emerged.
Andrade and Rocha (2018) proposed mapping human
analytic skills to agent modules, employing situation
awareness constructs for informed decision support. Mora
et al. (2025) applied cognitive security principles to
counter social engineering threats, modeling user
behavior and integrating real-time intervention strategies.
These works leverage cognitive architectures like ACT-R
and SOAR to simulate expert reasoning, but they typically
focus on discrete tasks rather than end-to-end incident

response pipelines.

Knowledge graphs have been adopted to enrich threat
intelligence and contextualize security events. Liao and
Bai (2022) implemented a cybersecurity knowledge graph
that interlinks indicators, tactics, and mitigation
strategies, enabling agents to reason about entity
relationships during incident analysis. Silva and Santos
(2021) applied graph-based techniques for real-time
threat correlation, underscoring the value of graph

structures in detecting multi-vector attacks.

Despite these advances, a unified ACIR system

integrating cognitive architectures, knowledge graphs,

and RL remains underexplored. Existing solutions often
address  isolated  phases—detection, triage, or
remediation—without providing seamless coordination
across the incident lifecycle. Moreover, evaluations are
frequently limited to synthetic datasets rather than
comprehensive enterprise network simulations. This
literature review identifies a clear research gap: the need
for a holistic ACIR framework capable of autonomous,
adaptive response with validated performance gains in
realistic settings. Our work addresses this by proposing an
integrated architecture and conducting extensive
experiments to quantify improvements in detection,
response, and learning adaptation (IBM Corporation,

2022; MITRE ATT&CK®, 2025).

METHODOLOGY

Architecture Overview

The ACIR framework is structured into three

interoperable layers:

1. Perception Layer

o Data Sources: Collects syslogs,
network flows, endpoint telemetry, and
cloud audit logs.

o Normalization: Transforms raw events
into a unified schema, tagging entities
(hosts, users, processes) and generating
threat indicators (file hashes, IP
addresses).

o Knowledge Graph: Constructs and
continuously updates a graph database
where nodes represent entities and
edges denote relationships or observed
interactions (Zhang & Li, 2022; Liao &
Bai, 2022).

2. Cognitive Reasoning Layer

o Hybrid Cognitive Engine: Integrates

ACT-R modules for declarative
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memory (facts about past incidents) and
procedural memory (rules for common
response actions).

o Reinforcement Learning Agent:
Implements a Deep Q-Network (DQN)
trained in a simulated environment to
select optimal containment and
remediation actions based on graph
state embeddings (Applebaum et al.,
2023; Talbert & Shvets, 2024).

o Policy Update Mechanism:
Leveraging reward signals—successful
containment yields positive rewards;
false positives and failed remediations
incur penalties—the RL agent refines
its policy over iterative attack
scenarios.

3. Action Layer

o Automated Playbooks: Encodes
remediation workflows (e.g., isolate
host, kill process, rotate credentials) as
parameterized scripts.

o Orchestration APIs: Interfaces with
EDR solutions, firewall controllers, and
directory services to execute actions via
RESTful calls.

o Audit Logging: Records all agent
decisions and actions for post-incident
analysis and compliance reporting

(Chen & Zhao, 2023).

Experimental Testbed

We deployed the framework within a network simulator
replicating a medium-sized enterprise: 200 endpoints,
Active Directory domain controllers, web servers,
databases, and cloud VMs. Attack scenarios were scripted
following MITRE ATT&CK techniques—phishing to
gain initial access (T1566), privilege escalation (T1068),

lateral movement via RDP (T1021.001), and data
exfiltration over DNS (T1048.003). Each scenario ran 10

iterations to evaluate learning adaptation.

Evaluation Metrics

e Mean Time to Detect (MTTD): Time from
attack start to first alert flagged by agent.

e Mean Time to Respond (MTTR): Time from
detection to completion of containment and
recovery.

e False Positive Rate (FPR): Ratio of benign
events misclassified as malicious.

e Adaptation Score: Percentage increase in
successful  first-shot  remediation  across

iterations.

Training and Validation

The DQN agent was trained over 1,000 simulated
episodes with e-greedy exploration. States were encoded
using graph neural network embeddings capturing entity
connectivity and threat patterns (Silva & Santos, 2021).
Validation was conducted on a separate set of 200
episodes with novel attack sequences to assess

generalization.

RESULTS

Over 100 distinct attack scenarios executed across our
simulated enterprise network yielded compelling
evidence of the Autonomous Cyber Incident Response
(ACIR) framework’s efficacy. First, agents achieved a
mean time to detect (MTTD) of 56 seconds (SD 12 ),
representing a 60 percent reduction compared to the
baseline SIEM-plus-human workflow, which recorded an
average of 140 seconds (SD £25 s) (Applebaum, Gross,
& Harel, 2023; Giovannelli, 2022). This rapid detection
arose from the perception layer’s continuous ingestion of

multi-source telemetry—syslogs, endpoint events, and
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network flows—normalized into a unified schema and fed
into a dynamic knowledge graph. By correlating
seemingly disparate events (e.g., anomalous user logins
followed by unusual PowerShell invocations), agents
flagged incipient compromise far more quickly than
rule-based SIEM alerts, which often await threshold

breaches or manual signature updates.

In terms of mean time to respond (MTTR), ACIR agents
delivered containment and remediation actions within an
average of 300 seconds (SD +30s), a 50 percent
improvement over the baseline’s 600 seconds (SD +45 s)
(Garg & Tan, 2024; Sommer & Paxson, 2010). The
cognitive reasoning layer, combining ACT-R procedural
rules with a Deep Q-Network, prioritized high-impact
actions—such as isolating compromised hosts,
terminating  malicious  processes, and rotating
credentials—based on learned policies. Importantly, the
action layer’s automated playbooks interfaced directly
with EDR and firewall APIs, eliminating delays for
human approval. For example, during a lateral-movement
scenario using Pass the Hash (T1550), agents identified
sequential authentication failures across multiple hosts
and executed an isolation playbook within 120 seconds—
more than twice as fast as human analysts could research

and enact the countermeasure.

Crucially, the false positive rate (FPR) remained
statistically equivalent between ACIR and the baseline:
5.0 percent versus 4.5 percent (p = 0.12) (Garg & Tan,
2024; Silva & Santos, 2021). This parity demonstrates
that accelerated response speed did not come at the cost
of accuracy. Agents leveraged graph-based anomaly
detection algorithms to filter benign deviations—such as
legitimate administrative scripts—by cross-referencing
user roles and historical behavior patterns stored in the
knowledge graph. Only high-confidence alerts triggered
workflow execution, thereby avoiding SOC alert fatigue

while maintaining stringent security standards.

The Adaptation Score, defined as the percentage
improvement in first-shot successful remediation across
successive attack iterations, showed a 30 percent
increase after ten training cycles (Talbert & Shvets, 2024;
Applebaum et al., 2023). Initially, agents adopted
coarse-grained responses (e.g., network-wide isolation)
that, while effective, incurred unnecessary service
disruptions. Over repeated exposures to the same attack
patterns—phishing-initiated remote code execution
sequences—agents learned to refine their actions,
targeting only compromised nodes and specific attack
vectors. This learning reduced collateral impact by
40 percent and further compressed MTTR by an

additional 20 percent in later runs.

Collectively, these results validate the ACIR framework’s
ability to significantly accelerate detection and response
without inflating false  positives, while its
reinforcement-learning—based adaptation yields
progressively more precise and minimally disruptive
actions, demonstrating resilience and operational

effectiveness in dynamic threat environments.

CONCLUSION

This evaluation confirms that Autonomous Cyber
Incident Response, powered by cognitive security agents,
represents a transformative shift in cybersecurity
operations. By uniting continuous telemetry ingestion,
knowledge-graph—driven situational awareness, hybrid
cognitive architectures, and reinforcement-learning—
enhanced decision making, ACIR agents deliver rapid,
accurate, and adaptive incident response that outpaces
traditional, human-dependent workflows. MTTD
reductions of 60 percent and MTTR improvements of
50 percent underscore the framework’s capacity to
neutralize threats within critical windows, thereby
minimizing potential damage and data loss (Giovannelli,

2022; Garg & Tan, 2024).
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Equally important, ACIR maintains a low false positive
rate, demonstrating that automated speed gains need not
compromise precision. The knowledge graph’s contextual
filtering ensures that only genuinely malicious behaviors
prompt response actions, thus preserving SOC analyst
trust and preventing alarm fatigue (Silva & Santos, 2021;
Applebaum et al.,, 2023). Meanwhile, the observed
30 percent improvement in first-shot remediation
efficacy across training iterations highlights the value of
reinforcement learning: agents progressively refine their
policies, reducing collateral impacts and optimizing
resource utilization (Talbert & Shvets, 2024; Liao & Bali,
2022).

Operationally, the ACIR framework’s modular design
facilitates seamless integration with existing security
stacks.  Organizations can incrementally deploy
perception components alongside their SIEM and EDR
tools, then progressively activate cognitive and action
layers without disrupting established processes. This
phased adoption mitigates transition risks and maximizes
immediate ROI, as incremental automation of detection,
triage, and common remediation tasks quickly reduces

analyst workloads and incident backlog.

In conclusion, Autonomous Cyber Incident Response via
Cognitive Security Agents stands as a promising
paradigm for next-generation SOC operations. By rapidly
detecting and responding to threats, maintaining high
accuracy, and learning continuously from outcomes,
ACIR offers a pathway to scalable, proactive, and
intelligent cyber defense—one capable of adapting in real

time to the ever-changing landscape of digital threats.
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