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ABSTRACT— Privacy preservation has emerged as a 

paramount concern in the deployment of artificial 

intelligence (AI) systems for financial fraud detection. 

As financial institutions increasingly rely on machine 

learning models trained on vast amounts of sensitive 

customer transaction data, the risk of data exposure—

whether through centralized data breaches, insider 

misuse, or model inversion attacks—has grown 

commensurately. This manuscript presents a 

comprehensive, privacy-aware AI framework that 

integrates federated learning within a federated data 

lake architecture to detect fraudulent financial 

activities while ensuring that raw transaction data 

never leaves its originating institution. We begin by 

outlining the operational challenges faced by financial 

consortia in collaborative fraud detection, including 

regulatory compliance under GDPR, PCI DSS, and 

similar frameworks. We then detail our federated data 

lake deployment, leveraging Apache Iceberg for 

unified data cataloging and Presto SQL for seamless 

cross-node querying, combined with secure 

aggregation protocols that cryptographically shield 

client model updates. 

 

Figure-1.Privacy-Preserving AI for Fraud Detection 
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INTRODUCTION  

Financial fraud detection has long been a critical function 

for banking and fintech institutions, with annual global 

losses exceeding USD 32 billion (Association of Certified 

Fraud Examiners, 2022). Traditional systems rely on the 

centralization of transaction data into monolithic 
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repositories, enabling comprehensive analysis but 

simultaneously creating a single point of failure 

susceptible to large-scale data breaches and internal 

misuse. Heightened regulatory scrutiny—exemplified by 

Europe’s General Data Protection Regulation (GDPR) 

and the Payment Card Industry Data Security Standard 

(PCI DSS)—now mandates stringent controls over 

personal data processing and storage. Consequently, 

financial consortia face a dilemma: how to collaboratively 

build powerful fraud detection models that leverage broad 

datasets while preserving the confidentiality of each 

institution’s proprietary information. 

 

Figure-2.Where Fraud Detection Meets Privacy Preservation 

Federated data lakes and federated learning (FL) have 

emerged as promising solutions to this challenge. 

Federated data lakes (Zhou et al., 2019) distribute data 

storage across multiple nodes under local governance, yet 

present a unified interface for query and analytics via 

tools like Apache Iceberg and Presto SQL. FL (McMahan 

et al., 2017) complements this by enabling decentralized 

model training: instead of transferring raw data to a 

central server, each node trains a local model, and only 

model updates (e.g., weight gradients) are communicated 

for secure aggregation. This paradigm minimizes data 

movement, substantially reducing privacy risks and 

enhancing regulatory compliance. 

However, vanilla FL is not impervious to attacks. 

Gradient inversion techniques can potentially reconstruct 

sensitive training samples from shared gradients—posing 

an unacceptable risk in financial contexts. To counter this, 

our framework incorporates additive secret sharing for 

secure aggregation (Bonawitz et al., 2017) and Gaussian‐

mechanism differential privacy (DP) to obfuscate 

individual updates (Abadi et al., 2016). Additionally, we 

adopt homomorphic encryption‐compatible data 

representations for critical aggregation operations, 

providing an extra layer of cryptographic protection. 

Our contributions are threefold: 

1. End-to-end architecture: We design and 

deploy a federated data lake environment 

integrating Apache Iceberg and Presto SQL for 

distributed data management, coupled with a 

secure FL pipeline. 

2. Privacy-preserving enhancements: We 

implement secure aggregation and DP noise 

calibration, analyzing their impact on model 

convergence and privacy metrics. 

3. Empirical evaluation: Using a consortium 

dataset of 3 million anonymized transactions 

from four financial institutions, we benchmark 

our privacy-aware federated model against a 

centralized baseline, demonstrating only 

marginal performance degradation (–0.8% 

accuracy) but significant privacy risk reduction 

(–75% score). 

The remainder of this manuscript is organized as follows. 

Section 2 surveys related work in AI-driven fraud 

detection, FL in finance, privacy-preserving protocols, 

and federated data lakes, identifying gaps addressed by 

our study. Section 3 presents a detailed statistical 

comparison between centralized and federated 

approaches. Section 4 elaborates on our methodology, 

covering dataset preparation, system architecture, FL 

protocol, model specification, and evaluation framework. 
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Section 5 reports results, examining convergence 

behavior, performance metrics, and privacy–utility trade-

offs. Section 6 concludes with key findings and practical 

implications. Section 7 outlines avenues for future 

research to further enhance privacy, scalability, and 

model interpretability in cross-institutional fraud 

detection. 

LITERATURE REVIEW 

The domain of financial fraud detection has progressively 

shifted from traditional rule-based systems to 

sophisticated machine learning (ML) and deep learning 

techniques. Ngai et al. (2011) provide an authoritative 

classification of ML algorithms—such as logistic 

regression, decision trees, and support vector machines—

highlighting their strengths in detecting known fraud 

patterns but also noting limitations in handling evolving 

attack vectors. Recent advances employ ensemble 

methods (e.g., random forests, gradient boosting) to 

improve generalization, while deep architectures, 

including autoencoders and convolutional neural 

networks, capture complex non-linear relationships and 

anomalies in transaction flows (Wang et al., 2020). 

Despite high detection rates, centralized AI systems pose 

inherent privacy challenges. Federated learning, 

introduced by McMahan et al. (2017), addresses this by 

coordinating local training across clients and aggregating 

model updates centrally. In the financial sector, Hardy et 

al. (2017) demonstrate the feasibility of FL for credit 

scoring across two credit bureaus, achieving 92% of 

centralized model performance. Li et al. (2020) extend 

this to anti-money laundering, reporting comparable 

accuracy in AML detection when training across three 

banks. However, these studies often overlook robust 

privacy guarantees and assume semi-honest servers. 

Secure aggregation, pioneered by Bonawitz et al. (2017), 

cryptographically masks individual updates until 

aggregated, thwarting a curious server. Differential 

privacy further augments this by adding random noise to 

gradients, bounding an individual’s contribution to model 

updates (Abadi et al., 2016). Geyer et al. (2017) explore 

client-level DP in FL, balancing privacy budgets and 

model utility. Homomorphic encryption (HE) techniques 

allow computations directly on encrypted data, though 

with prohibitive computational overhead for large models 

(Acar et al., 2018). 

Federated data lakes (Zhou et al., 2019) provide a 

metadata-driven layer unifying distributed datasets, 

enabling global schema queries without data movement. 

Such architectures are increasingly applied in cross-

industry analytics, including healthcare and 

manufacturing, yet remain underutilized in finance. 

Hasan et al. (2021) propose a prototype federated data 

lake for industrial analytics but do not integrate ML 

training workflows. 

Identified Gaps: 

• Integration Deficit: Existing FL research in 

finance often lacks integration with federated 

data lake environments for scalable data 

management. 

• Privacy–Utility Trade-off: Few studies 

rigorously quantify the privacy–utility balance 

when combining secure aggregation and DP in 

real financial datasets. 

• Attack Resilience: There is limited empirical 

analysis of gradient inversion and membership 

inference attacks within federated financial 

settings. 

Our work addresses these gaps by deploying a 

production‐grade federated data lake across four 

institutions, implementing secure aggregation and DP, 
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and evaluating model robustness under privacy attacks. 

We quantify both detection performance and privacy 

metrics, offering actionable insights for practitioners. 

STATISTICAL ANALYSIS 

To rigorously assess the efficacy and privacy implications 

of our federated framework, we conduct a comparative 

analysis between a centralized baseline model—trained 

on pooled data—and our privacy-aware federated model. 

We evaluate across common performance metrics and 

introduce a custom Privacy Risk Score (PRS), defined as 

the normalized sum of membership inference 

vulnerability and gradient leakage potential (scaled 0–1, 

lower is better). Table 1 summarizes the key results: 

Table 1. Performance and Privacy Comparison 

between Centralized and Federated Models 

Metric Centralized 

Model 

Federated 

Model 

Observed 

Change 

Accuracy 

(%) 

95.1 94.3 –0.8 

Precision 

(%) 

93.5 92.7 –0.8 

Recall (%) 91.8 90.9 –0.9 

F1-Score 

(%) 

92.6 91.8 –0.8 

Privacy 

Risk Score 

(PRS, 0–

1)* 

0.72 0.18 –0.54 

 

Figure-3. Performance and Privacy Comparison between Centralized 

and Federated Models 

Accuracy, Precision, Recall, F1-Score: The federated 

model achieves 94.3% accuracy, demonstrating only a 

marginal 0.8 percentage-point decline compared to 

centralized training. Similar patterns are observed for 

precision and recall, indicating that the federated 

approach preserves the model’s ability to correctly 

identify both fraudulent and legitimate transactions. The 

consistent 0.8–0.9% performance drop aligns with prior 

FL studies in finance (Li et al., 2020), attributing minor 

degradation to non-IID data distributions and DP noise. 

Privacy Risk Score (PRS): The centralized model’s PRS 

of 0.72 reflects high exposure: raw data is aggregated 

centrally, making it vulnerable to insider threats and 

breaches. In contrast, our federated framework achieves a 

PRS of 0.18, marking a 75% reduction in data exposure. 

This substantial privacy gain results from combining 

secure aggregation—which prevents the server from 

accessing individual updates—and Gaussian DP noise, 

which mitigates gradient inversion risks (Abadi et al., 

2016; Bonawitz et al., 2017). 
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Convergence Behavior: Figure 1 (not shown here) 

details training loss curves over 50 FL rounds. The 

federated model converges within 30 rounds, with 

transient oscillations induced by DP noise peaking 

between rounds 15–25. These oscillations stabilize as 

noise is averaged out across clients’ updates. 

Communication Overhead: On average, each FL round 

incurs 2 MB of client‐to‐server data transfer per 

institution, primarily weight updates. Compression via 

quantization (8-bit) reduces bandwidth by 40% with 

negligible accuracy loss (<0.2%). 

Ablation Studies: 

• Secure Aggregation Only: Disabling DP noise 

yields PRS = 0.35, suggesting that aggregation 

alone halves exposure but remains susceptible to 

inversion attacks. 

• DP Only: Applying DP without aggregation 

secures individual updates but leaves them 

visible to the server, resulting in PRS = 0.44. 

• Both Techniques (Full Framework): Achieves 

lowest PRS = 0.18, underscoring the 

complementary nature of secure aggregation and 

DP. 

In summary, our statistical analysis confirms that the 

privacy-aware federated model delivers robust fraud 

detection capabilities comparable to centralized methods 

while dramatically enhancing privacy protections—a 

critical requirement for consortium-based deployments. 

METHODOLOGY 

Dataset and Feature Engineering  

We assembled a consortium dataset from four financial 

institutions, each contributing anonymized transaction 

logs spanning six months. The combined dataset 

comprises 3 million entries, with a fraud incidence of 

1.5%. Key features include: transaction amount (log-

transformed), merchant category (one-hot encoded), 

timestamp-derived features (hour-of-day, day-of-week), 

device fingerprint vectors (hashed identifiers), 

geolocation clusters (latitude/longitude binned), and 

historical account behavior metrics (rolling mean and 

variance of transaction amounts). Outlier detection via 

interquartile range filtering removes extreme anomalies. 

Continuous features undergo min–max normalization; 

categorical features use one‐hot and embedding 

techniques for high-cardinality categories. 

Federated Data Lake Architecture  

Each institution hosts a local data lake node built on 

Apache Iceberg, supporting ACID transactions and 

versioned data. Presto SQL federator presents a unified 

catalog, enabling schema-on-read queries without 

physical data transfer. Access controls enforce role-based 

permissions and audit logging for compliance. 

Federated Learning Protocol  

We implement the FedAvg algorithm (McMahan et al., 

2017) with the following workflow per global round: 

1. Model Broadcast: The central federator 

securely transmits the global model parameters 

to all clients. 

2. Local Training: Each client trains for E = 5 

epochs using mini-batch stochastic gradient 

descent (batch size 128, learning rate 0.01). 

Local training leverages PyTorch with 

differential privacy hooks (Opacus). 

3. Gradient Encryption: Clients apply additive 

secret sharing to mask gradient updates into 

shares distributed across two non-colluding 

aggregation servers (Bonawitz et al., 2017). 

4. Differential Privacy: Before sharing, each 

client clips gradient norms to C = 1.0 and adds 

https://wjftcse.org/index.php/wjftcse/index
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Gaussian noise calibrated to ε = 1, δ = 1×10⁻⁵ 

(Abadi et al., 2016). 

5. Secure Aggregation: Aggregation servers 

reconstruct the sum of masked updates, which 

the central federator decrypts to update the 

global model. 

Model Architecture  

The neural network comprises an input layer matching the 

feature vector dimension (64), followed by two hidden 

layers with 128 and 64 ReLU-activated neurons, each 

followed by dropout (p = 0.3). The output layer applies a 

sigmoid activation for binary classification. The model 

contains approximately 25,000 trainable parameters. 

Evaluation Metrics  

We assess detection performance using accuracy, 

precision, recall, and F1‐score. Privacy preservation is 

quantified via the Privacy Risk Score (PRS), combining 

membership inference success probability and gradient 

inversion vulnerability, both estimated through simulated 

attacks on a held-out validation set (Bhowmick et al., 

2018). Communication overhead is measured in 

megabytes transferred per round. 

Experimental Setup  

Experiments run on four AWS EC2 instances (m5.large) 

peered via a private VPC. Training utilizes PyTorch 1.11 

and Opacus for DP. Hyperparameters were tuned via grid 

search on a local development set, optimizing for F1‐

score under the constraint PRS ≤ 0.2. We conduct 50 

global rounds and report average metrics over the final 10 

rounds to account for convergence stability. 

RESULTS 

Performance Comparison  

Table 1 (Section 3) presents aggregated metrics. The 

federated model attains 94.3% accuracy, closely matching 

the centralized baseline’s 95.1%. Precision (92.7%) and 

recall (90.9%) remain within 1% of centralized 

performance, yielding an F1-score of 91.8%. These 

results confirm that FL—despite operating on distributed, 

non-IID data—can approximate centralized training 

efficacy when combined with robust privacy measures. 

Convergence Behavior  

Training loss curves (Figure 1) illustrate that the federated 

model converges after ~30 rounds. Early rounds exhibit 

noisy gradients due to DP noise; however, the ensemble 

averaging effect stabilizes updates, leading to smooth 

convergence in later rounds. By round 50, fluctuations 

fall below 0.5% in loss. 

Privacy–Utility Trade-off  

The Privacy Risk Score (PRS) drops from 0.72 in 

centralized to 0.18 in federated mode, demonstrating a 

75% reduction in exposure. Ablation studies reveal that 

secure aggregation alone yields PRS = 0.35, while DP 

alone yields 0.44—highlighting the synergy of combined 

techniques. Figure 2 (not shown) plots PRS against F1-

score across varying ε values (0.5–2.0), indicating an 

optimal ε ≈ 1.0 for balanced privacy and utility. 

Communication Overhead  

Per-round communication averages 2 MB per client. 

Quantization to 8-bit precision reduces this by 40% with 

<0.2% accuracy loss, suggesting viable bandwidth 

optimizations for resource-constrained environments. 

Attack Resilience  

Simulated membership inference attacks on the final 

federated model achieve an attack accuracy of 54%—

close to random guessing—compared to 78% on the 

centralized model. Gradient inversion attempts yield 

visual reconstructions with 30% feature fidelity, versus 

85% fidelity in the centralized setting without DP noise. 

CONCLUSION 
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This manuscript has presented a privacy-aware AI 

framework for financial fraud detection that unites 

federated learning with federated data lake architectures 

to reconcile the dual imperatives of collaborative model 

performance and data confidentiality. Central to our 

approach is the deployment of secure aggregation via 

additive secret sharing and the incorporation of 

differential privacy noise, ensuring that individual client 

contributions remain irrecoverable while collectively 

enhancing the global model. Empirical evaluation on a 

consortium dataset of 3 million transactions across four 

institutions confirms that the federated model achieves 

94.3% accuracy—only marginally lower than the 95.1% 

baseline—while reducing the Privacy Risk Score by 75%. 

Performance metrics including precision (92.7%), recall 

(90.9%), and F1-score (91.8%) further corroborate that 

federated training can closely approximate centralized 

methods, even under non-IID data distributions and 

rigorous privacy constraints. 

Beyond performance, our analysis highlights several 

operational insights. First, the combination of secure 

aggregation and differential privacy proves synergistic, 

offering stronger protections (PRS = 0.18) than either 

mechanism alone. Second, communication overhead—

averaging 2 MB per client per round—can be 

significantly mitigated through gradient quantization 

without compromising model efficacy. Third, resilience 

to membership inference and gradient inversion attacks 

underscores the framework’s suitability for real-world 

financial deployments. 

Nevertheless, challenges remain. Gradient noise induced 

by differential privacy can temporarily destabilize 

training in early rounds, necessitating adaptive noise 

scheduling or warm-start strategies. The federated data 

lake architecture, while scalable, demands robust 

governance and trust frameworks among participating 

institutions to prevent collusion or data poisoning attacks. 

Furthermore, heterogeneity in local data distributions 

calls for personalized FL variants—such as FedProx or 

multi-task FL—to optimize model performance for each 

client’s unique risk profile. 

In summary, our study demonstrates that privacy-aware 

federated learning within federated data lakes offers a 

compelling, practical approach for consortium-based 

financial fraud detection. By enabling institutions to 

collaboratively leverage collective intelligence without 

exposing raw data, this framework aligns with stringent 

regulatory requirements and evolving ethical standards. 

As financial ecosystems become increasingly 

interconnected, such privacy-preserving paradigms will 

be indispensable for maintaining trust and safeguarding 

customer assets. 

FUTURE SCOPE OF STUDY 

Building upon our privacy-aware federated framework, 

several avenues warrant exploration to further enhance 

scalability, resilience, and interpretability: 

1. Blockchain-Based Federator 

Decentralization  

Transitioning from a centralized federator to a 

permissioned blockchain network can eliminate 

single points of trust. Smart contracts could 

orchestrate model aggregation, enforce protocol 

compliance, and provide tamper-evident audit 

trails. Research should evaluate the trade-offs 

between blockchain consensus overhead and FL 

communication efficiency. 

2. Adaptive Differential Privacy Scheduling  

Dynamic adjustment of privacy budgets (ε, δ) 

based on convergence rates and utility thresholds 

can optimize the privacy–utility frontier. 

Reinforcement learning agents could modulate 
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noise levels in real time, balancing early-round 

stability with long-term privacy guarantees. 

3. Personalized Federated Learning  

Non-IID client data distributions often degrade 

global model performance for minority clients. 

Techniques such as FedPer (Smith et al., 

2017)—which allocates private model 

components per client—can tailor fraud 

detection models to local transaction patterns. 

Comparative studies should measure gains in 

detection efficacy against increased model 

complexity. 

4. Communication-Efficient Protocols  

Beyond quantization, exploring sparsification 

(e.g., Top-k gradient selection) and update 

caching mechanisms can further reduce 

bandwidth usage. Hybrid approaches that 

combine periodic full updates with incremental 

delta exchanges may strike optimal 

communication–accuracy balances for resource-

constrained edge deployments. 

5. Explainable Federated AI  

Regulatory frameworks increasingly demand 

model interpretability, especially in high-stakes 

domains like finance. Research should develop 

federated variants of explainable AI 

techniques—such as locally computed Shapley 

values or attention‐based saliency maps—that 

preserve privacy while offering actionable 

insights to compliance officers. 

By pursuing these directions, the research community can 

progressively refine privacy-aware federated AI systems, 

ensuring robust, transparent, and scalable financial fraud 

detection solutions that meet the evolving demands of 

regulators, institutions, and customers alike. 
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