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ABSTRACT

The rapid expansion of Internet of Things (IoT)

devices across consumer, industrial, and

critical-infrastructure  domains has  delivered
unprecedented connectivity and automation. Yet this
proliferation has also exposed a pressing security
challenge: adversarial machine learning (AML)
attacks that exploit subtle input perturbations to
mislead or disable embedded intelligence. Such
attacks—from single-step perturbations like the Fast
Gradient Sign Method (FGSM) to iterative
optimization methods such as Projected Gradient
Descent (PGD) and the Carlini & Wagner (C&W)
attack—can have severe consequences in IoT contexts,
ranging from false alarms in safety-critical sensors to
manipulated decisions in autonomous

AML defenses,

systems.
Traditional while effective in
large-scale datacenter environments, often impose
prohibitive computational or latency overheads for
resource-constrained IoT endpoints. In this work, we
present a hybrid defense framework specifically
tailored to the constrained and heterogeneous nature

of IoT ecosystems. Our approach integrates three

complementary techniques: (1) adversarial training,
which augments the model’s decision boundary by
including adversarial offline

examples during

retraining; (2) randomized smoothing, which adds
by

predictions over noise-perturbed inputs at inference

certified robustness guarantees averaging

time; and (3) feature squeezing, a lightweight
preprocessing step that reduces input complexity via
bit-depth reduction and median filtering. By

strategically offloading the more intensive
randomized smoothing to gateway or cloud nodes,
while retaining feature squeezing for on-device
filtering, we achieve a balanced trade-off between

robustness and real-time responsiveness.
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INTRODUCTION

The Internet of Things (IoT) paradigm has transformed a
broad array of sectors—industrial automation, smart
cities, healthcare monitoring, and autonomous vehicles—
by embedding intelligence directly into sensors, actuators,
and edge nodes. Machine learning (ML) models deployed
on these devices enable adaptive anomaly detection,
predictive maintenance, computer vision tasks, and more,
driving  operational  efficiency and  real-time
decision-making. However, the very characteristics that
make IoT attractive—ubiquity, heterogeneity, and
constrained resources—also introduce unique security
challenges. In particular, adversarial machine learning
(AML) attacks have emerged as a potent threat, wherein
carefully crafted, human-imperceptible perturbations to
input data can drastically alter model outputs, leading to
misclassification, denial-of-service, or even malicious
control of critical infrastructure (Goodfellow, Shlens, &
Szegedy, 2014; Papernot et al., 2016).
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Figure-2.1oT Security Enhancement Process

Unlike cloud or datacenter environments, [oT endpoints
often lack the CPU, memory, and energy budgets to
deploy heavyweight security solutions. They may be
deployed in physically accessible or unattended locations,
further increasing vulnerability. Furthermore, the
networked nature of IoT systems means that a successful
adversarial compromise at the edge can propagate
incorrect or manipulated information upstream,
undermining the integrity of the entire pipeline—from
gateways to cloud analytics. Thus, designing AML
defenses specifically for IoT ecosystems is not merely an
academic exercise but a critical necessity for safe and

reliable operation.

Prior research has demonstrated a variety of attack
strategies—from single-step gradient methods like
FGSM, which exploits linear weaknesses in neural
networks, to sophisticated multi-step techniques like PGD
and optimization-based C&W attacks that find minimal

perturbations under norm constraints. These methods
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highlight the transferability of adversarial examples and
their potency even in black-box settings, where the
attacker has limited knowledge of the target model.
Defenses such as adversarial training have proven
effective at increasing robustness but require extensive
retraining with adversarial examples—an offline process
that still leaves models vulnerable to unseen attacks.
Certified defenses like randomized smoothing provide
theoretical guarantees of robustness but can incur
substantial inference overhead, making them less suitable

for real-time IoT applications.

In this manuscript, we address these challenges by
proposing a hybrid defense architecture that carefully
allocates defense responsibilities between edge devices
and more capable gateway or cloud nodes. We combine
adversarial training—performed offline on the full
dataset—with lightweight on-device feature squeezing to
filter out adversarial noise, and gateway-level randomized
smoothing to certify predictions. This layered approach
aims to harness the strengths of each technique while
mitigating their individual drawbacks: adversarial
training offers baseline robustness, feature squeezing
imposes negligible latency on the device, and randomized
smoothing provides provable guarantees without

overburdening resource-constrained endpoints.

Our evaluation on a simulated but representative loT
deployment demonstrates that this synergy achieves
substantial reductions in attack success rates—dropping
from over 80% to under 15%—while maintaining
sub-10 ms per-sample inference latency on typical IoT
hardware. Moreover, the trade-off in clean-data accuracy
remains within 3 percentage points, an acceptable margin
for many safety-critical applications. Through detailed
analysis of latency, accuracy, and robustness trade-offs,
we derive practical deployment guidelines for securing
ML-enabled IoT systems in real-world settings. These

contributions aim to guide researchers and practitioners in

closing the adversarial gap in next-generation edge

intelligence.

LITERATURE REVIEW

Adversarial vulnerabilities in modern neural networks
were first brought to widespread attention by Szegedy et
al. (2013), who observed that minute, carefully-crafted
perturbations imperceptible to humans could cause high-
confidence misclassification. Goodfellow, Shlens, and
Szegedy (2014) formalized the Fast Gradient Sign
Method (FGSM), illustrating that linear characteristics of
deep networks could be exploited to generate adversarial
examples in a single gradient step. Subsequent work by
Madry et al. (2018) introduced Projected Gradient
Descent (PGD) as a multi-step variant that iteratively
refines perturbations within norm constraints, setting a

new standard for attack strength.

Carlini and Wagner (2017) further advanced the attack
landscape with an optimization-based approach that
directly minimizes perturbation magnitude under (.
constraints, achieving near-perfect evasion even against
models hardened by defensive distillation. Papernot et al.
(2016) demonstrated the transferability of adversarial
examples across models and domains, underscoring risks
in black-box scenarios commonly found in IoT
deployments, where attackers may only query remote

endpoints.

In response, a spectrum of defenses has emerged.
Adpversarial training—incorporating adversarial examples
into the training set—remains a cornerstone, shown to
significantly raise the bar for attackers (Madry et al.,
2018). However, this technique requires large volumes of
adversarial data and extended training times, which are
impractical for on-device learning. Certified defenses like
randomized smoothing (Cohen, Rosenfeld, & Kolter,
2019) offer formal guarantees by predicting over noise-

augmented inputs and certifying that no adversarial
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perturbation within a specified radius can change the
output. Yet, the Monte Carlo sampling required for
certification introduces tens of milliseconds of overhead

per inference, straining edge device budgets.

Lightweight preprocessing defenses such as feature
squeezing (Xu, Evans, & Qi, 2017) aim to remove
adversarial noise by reducing input complexity—for
example, by lowering bit depth or applying spatial
smoothing—effectively  collapsing  high-frequency
perturbations. While computationally cheap, feature
squeezing alone cannot defend against adaptive attackers
who incorporate the squeezing transform into their attack
pipeline. Hybrid approaches have been proposed: Salman
et al. (2020) combined adversarial training with denoising
autoencoders to bolster image-based defenses; Wang et

al. (2021) explored edge-cloud collaborative defenses,

offloading certification and analysis to gateway nodes.

Specific to 10T, Yan et al. (2018) evaluated FGSM and
PGD attacks on embedded vision sensors, revealing
misclassification rates above 75% with minimal
perturbation budgets. Komkov and Petiushko (2019)
applied universal perturbations to time-series sensor
streams, disrupting industrial anomaly detection systems.
Shafique and Farooq (2020) demonstrated that resource-
limited IoT nodes could deploy simple CNN+LSTM
models for botnet detection, but they remained vulnerable

to adversarial evasion without additional defenses.

Our work builds on these insights by architecting a multi-
layered defense tailored for heterogeneous IoT
environments. By distributing defense mechanisms across
device, gateway, and cloud layers, we seek to maximize
robustness while respecting the stringent latency and

resource constraints inherent in real-world deployments.

STATISTICAL ANALYSIS

Table 1. Attack Success Rates Before and After

Defense Mechanisms across 1,000 Test Samples

Attac | Baselin After After Randomized
k e Adversari | Smoothing + Featu
Type | Success al re Squeezing (%)
Rate Training
(%) (%)

FGS 82.4 38.7 12.3

M

PGD 85.1 41.5 14.8
C&W 79.8 36.2 11.5

Attack Type
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Figure-3. Attack Success Rates Before and After Defense Mechanisms

across 1,000 Test Samples

METHODOLOGY

To evaluate the efficacy of our hybrid AML defense in
realistic IoT settings, we constructed a comprehensive
experimental pipeline reflecting the heterogeneity and

resource constraints of modern deployments.

1. System Topology and Dataset Collection
We simulated an IoT network comprising 100 edge
devices of three types: 40 RGB-camera modules for

visual event detection, 30 temperature/humidity sensors,
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and 30 passive infrared (PIR) motion sensors. All devices
communicated with a central gateway running on an Intel
Xeon server, which in turn interfaced with a cloud-hosted
machine learning service. Over a 30-day period, the
sensors generated a total of 50,000 labeled instances:
25,000 normal operation samples and 25,000 anomalies
(e.g., motion without authorization, abnormal
temperature fluctuations). Camera frames were labeled
for presence/absence of target objects; scalar sensors

flagged threshold-exceedance events.

2. Model Architectures

We designed two lightweight models: a convolutional
neural network (CNN) for image data and a multilayer
perceptron (MLP) for scalar sensor streams. The CNN
comprised three convolutional layers (filters=16,32,64;
kernel=3x%3), each followed by ReLU activation and 2x2
max-pooling, then two fully-connected layers (128, 64
units) before a softmax output. The MLP featured three
dense layers (64—32—16) with ReLU activations. Both
models were trained from scratch on 80% of the dataset
(40,000 samples), validated on 10% (5,000), and tested on
the remaining 10% (5,000).

3. Adversarial Example Generation
Using the CleverHans library (Papernot et al., 2018), we

generated adversarial perturbations on test samples via:

e  FGSM: one-step (o attack, £=0.03

e  PGD: multi-step Lo attack, e=0.03, 40 iterations,
step size=0.01

e Carlini & Wagner (C&W): (. attack with
confidence=0.0, initial constant=0.01, 1,000

binary search steps

4. Defense Implementation

e Adversarial Training: We retrained both CNN
and MLP by augmenting each mini-batch

(size=64) with an equal number of adversarial

examples (FGSM and PGD mixed). Retraining
spanned 20 epochs, using Adam optimizer
(Ir=0.001), early stopping on validation
accuracy.

o Feature Squeezing: For all inputs at inference,
we applied 4-bit depth quantization (from
original 8-bit) and a 3x3 median filter. This
operation ran on the Raspberry Pi 4 edge device,
adding 0.8 ms per sample.

e Randomized Smoothing: Certified robustness
was provided at the gateway: each input was
perturbed with Gaussian noise (6=0.25) 50 times
and passed through the model; final prediction
was the majority vote. This process added 4.7 ms

per sample on the Intel Xeon server.

5. Evaluation Metrics

e Attack Success Rate (ASR): Percentage of
adversarial samples that caused
misclassification.

e (Clean-Data Accuracy: Model accuracy on
unperturbed test samples.

e Average Inference Latency (AIL): End-to-end
time from input arrival at edge to final prediction
at gateway. Measured separately on Raspberry
Pi 4 and Intel Xeon.

RESULTS

The hybrid defense yielded substantial robustness gains
while maintaining low latency and high clean-data

accuracy.

1. Robustness Improvement

Baseline models exhibited ASRs of 82.4% (FGSM),
85.1% (PGD), and 79.8% (C&W). After adversarial
training alone, ASRs dropped to 38.7%, 41.5%, and
36.2%, respectively. Incorporating feature squeezing and

gateway-level randomized smoothing further reduced
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ASRs to 12.3%, 14.8%, and 11.5% (Table 1),

representing >85% relative reduction from baseline.

2. Latency Overhead

On Raspberry Pi 4, feature squeezing added 0.8 ms per
sample; adversarial training incurred no additional
runtime cost since it is offline. On the Intel Xeon gateway,
randomized smoothing added 4.7ms per sample.
Aggregate edge-to-gateway latency increased by 5.5 ms
on average, remaining under 10 ms per sample, well
within typical real-time requirements (e.g., <50 ms for

many IoT applications).

3. Accuracy Trade-Offs

Clean-data accuracy decreased marginally from 94.1%
(baseline) to 92.3% after adversarial training, and to
91.7% with the full defense stack—a 2.4 percentage-point
drop, which is acceptable for many domains requiring

robust security.

4. Ablation Insights

Removing feature squeezing increased ASRs by ~10%,
indicating its key role in filtering residual adversarial
noise. Reducing Monte Carlo samples in smoothing
below 30 degraded certified robustness by 5—7 percentage
points, highlighting the importance of sufficient

sampling.

CONCLUSION

Securing IoT ecosystems against adversarial machine
learning (AML) attacks requires a multifaceted approach
that reconciles the competing priorities of robustness,
real-time responsiveness, and resource efficiency. In this
work, we demonstrated that a hybrid defense
framework—composed of offline adversarial training,
on-device feature squeezing, and gateway-level
randomized smoothing—can dramatically reduce attack
success rates from over 80% to under 15%, while

incurring only modest performance trade-offs.

Specifically, the integration of feature squeezing on edge
devices filters out high-frequency adversarial noise with
an average latency penalty of less than 1 ms, and
gateway-level randomized smoothing provides formal
robustness guarantees with an additional 4.7 ms per

inference.

Beyond the quantitative improvements, our findings

underscore several practical insights for IoT practitioners:

1. Strategic Offloading of Computation
By relegating the more compute-intensive
randomized smoothing to centralized gateways
or cloud nodes, resource-constrained IoT
endpoints can maintain low-latency inference,
preserving real-time operation in
latency-sensitive  applications  such  as
autonomous navigation or industrial control
systems.

2.  Modular Defense Composition
The observed synergy between adversarial
training, feature squeezing, and smoothing
suggests that no single defense suffices against
the evolving landscape of AML attacks. Instead,
a layered architecture—where each component
addresses different facets of adversarial risk—
yields more comprehensive protection.

3. Trade-Off Calibration
While our experiments show only a 2.4% drop in
clean-data accuracy, domain-specific

requirements may tolerate different levels of

accuracy loss. Practitioners should calibrate

adversarial training ~ parameters (e.g.,
perturbation budgets, adversarial ratio in
training) and smoothing sampling counts to align
with their unique accuracy-latency-robustness
objectives.

4. Scalability and Adaptation

As IoT deployments scale to thousands or
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millions of devices, automated orchestration of
defense parameter updates (e.g., noise levels,
filter settings) becomes critical. Integrating these
mechanisms within a federated learning or over-
the-air-update framework can enable dynamic
adaptation to emerging adversarial threats
without manual reconfiguration.
5. Comprehensive Threat Modeling
Our study focused on image and scalar-sensor
perturbations, but IoT ecosystems encompass a
broader diversity of modalities—including
audio, RF signals, and complex multi-sensor
fusion pipelines. Extending the defense
framework to these modalities, and conducting
adversarial threat modeling at the system-level
(network routing, protocol manipulation),
represents an important next step.
6. Operational Considerations

Real-world IoT deployments must also account
for factors such as intermittent connectivity,
power constraints, and regulatory compliance.
Lightweight defenses like feature squeezing can
be implemented within existing firmware
updates, while gateway-level smoothing can
leverage secure enclaves or trusted execution
environments (TEEs) to protect noise-generation

processes from tampering.

In summary, the proposed hybrid defense framework
offers a pragmatic, scalable blueprint for enhancing the
security posture of ML-enabled IoT systems. By
balancing offline robustness, on-device pre-filtering, and
gateway certification, practitioners can achieve a
secure-by-design architecture that withstands
state-of-the-art adversarial attacks. Future work will delve
into automated defense orchestration, real-world field
validations across varied loT domains, and integration
with privacy-preserving collaborative learning paradigms

to further fortify the edge intelligence frontier.
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