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ABSTRACT 

The rapid expansion of Internet of Things (IoT) 

devices across consumer, industrial, and 

critical-infrastructure domains has delivered 

unprecedented connectivity and automation. Yet this 

proliferation has also exposed a pressing security 

challenge: adversarial machine learning (AML) 

attacks that exploit subtle input perturbations to 

mislead or disable embedded intelligence. Such 

attacks—from single-step perturbations like the Fast 

Gradient Sign Method (FGSM) to iterative 

optimization methods such as Projected Gradient 

Descent (PGD) and the Carlini & Wagner (C&W) 

attack—can have severe consequences in IoT contexts, 

ranging from false alarms in safety-critical sensors to 

manipulated decisions in autonomous systems. 

Traditional AML defenses, while effective in 

large-scale datacenter environments, often impose 

prohibitive computational or latency overheads for 

resource-constrained IoT endpoints. In this work, we 

present a hybrid defense framework specifically 

tailored to the constrained and heterogeneous nature 

of IoT ecosystems. Our approach integrates three 

complementary techniques: (1) adversarial training, 

which augments the model’s decision boundary by 

including adversarial examples during offline 

retraining; (2) randomized smoothing, which adds 

certified robustness guarantees by averaging 

predictions over noise-perturbed inputs at inference 

time; and (3) feature squeezing, a lightweight 

preprocessing step that reduces input complexity via 

bit-depth reduction and median filtering. By 

strategically offloading the more intensive 

randomized smoothing to gateway or cloud nodes, 

while retaining feature squeezing for on-device 

filtering, we achieve a balanced trade-off between 

robustness and real-time responsiveness. 
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Figure-1 .Hybrid Defense for IoT Security 
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INTRODUCTION 

The Internet of Things (IoT) paradigm has transformed a 

broad array of sectors—industrial automation, smart 

cities, healthcare monitoring, and autonomous vehicles—

by embedding intelligence directly into sensors, actuators, 

and edge nodes. Machine learning (ML) models deployed 

on these devices enable adaptive anomaly detection, 

predictive maintenance, computer vision tasks, and more, 

driving operational efficiency and real-time 

decision-making. However, the very characteristics that 

make IoT attractive—ubiquity, heterogeneity, and 

constrained resources—also introduce unique security 

challenges. In particular, adversarial machine learning 

(AML) attacks have emerged as a potent threat, wherein 

carefully crafted, human-imperceptible perturbations to 

input data can drastically alter model outputs, leading to 

misclassification, denial-of-service, or even malicious 

control of critical infrastructure (Goodfellow, Shlens, & 

Szegedy, 2014; Papernot et al., 2016). 

 

Figure-2.IoT Security Enhancement Process 

Unlike cloud or datacenter environments, IoT endpoints 

often lack the CPU, memory, and energy budgets to 

deploy heavyweight security solutions. They may be 

deployed in physically accessible or unattended locations, 

further increasing vulnerability. Furthermore, the 

networked nature of IoT systems means that a successful 

adversarial compromise at the edge can propagate 

incorrect or manipulated information upstream, 

undermining the integrity of the entire pipeline—from 

gateways to cloud analytics. Thus, designing AML 

defenses specifically for IoT ecosystems is not merely an 

academic exercise but a critical necessity for safe and 

reliable operation. 

Prior research has demonstrated a variety of attack 

strategies—from single-step gradient methods like 

FGSM, which exploits linear weaknesses in neural 

networks, to sophisticated multi-step techniques like PGD 

and optimization-based C&W attacks that find minimal 

perturbations under norm constraints. These methods 
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highlight the transferability of adversarial examples and 

their potency even in black-box settings, where the 

attacker has limited knowledge of the target model. 

Defenses such as adversarial training have proven 

effective at increasing robustness but require extensive 

retraining with adversarial examples—an offline process 

that still leaves models vulnerable to unseen attacks. 

Certified defenses like randomized smoothing provide 

theoretical guarantees of robustness but can incur 

substantial inference overhead, making them less suitable 

for real-time IoT applications. 

In this manuscript, we address these challenges by 

proposing a hybrid defense architecture that carefully 

allocates defense responsibilities between edge devices 

and more capable gateway or cloud nodes. We combine 

adversarial training—performed offline on the full 

dataset—with lightweight on-device feature squeezing to 

filter out adversarial noise, and gateway-level randomized 

smoothing to certify predictions. This layered approach 

aims to harness the strengths of each technique while 

mitigating their individual drawbacks: adversarial 

training offers baseline robustness, feature squeezing 

imposes negligible latency on the device, and randomized 

smoothing provides provable guarantees without 

overburdening resource-constrained endpoints. 

Our evaluation on a simulated but representative IoT 

deployment demonstrates that this synergy achieves 

substantial reductions in attack success rates—dropping 

from over 80% to under 15%—while maintaining 

sub-10 ms per-sample inference latency on typical IoT 

hardware. Moreover, the trade-off in clean-data accuracy 

remains within 3 percentage points, an acceptable margin 

for many safety-critical applications. Through detailed 

analysis of latency, accuracy, and robustness trade-offs, 

we derive practical deployment guidelines for securing 

ML-enabled IoT systems in real-world settings. These 

contributions aim to guide researchers and practitioners in 

closing the adversarial gap in next-generation edge 

intelligence. 

LITERATURE REVIEW 

Adversarial vulnerabilities in modern neural networks 

were first brought to widespread attention by Szegedy et 

al. (2013), who observed that minute, carefully‐crafted 

perturbations imperceptible to humans could cause high‐

confidence misclassification. Goodfellow, Shlens, and 

Szegedy (2014) formalized the Fast Gradient Sign 

Method (FGSM), illustrating that linear characteristics of 

deep networks could be exploited to generate adversarial 

examples in a single gradient step. Subsequent work by 

Madry et al. (2018) introduced Projected Gradient 

Descent (PGD) as a multi‐step variant that iteratively 

refines perturbations within norm constraints, setting a 

new standard for attack strength. 

Carlini and Wagner (2017) further advanced the attack 

landscape with an optimization‐based approach that 

directly minimizes perturbation magnitude under ℓ₂ 

constraints, achieving near‐perfect evasion even against 

models hardened by defensive distillation. Papernot et al. 

(2016) demonstrated the transferability of adversarial 

examples across models and domains, underscoring risks 

in black‐box scenarios commonly found in IoT 

deployments, where attackers may only query remote 

endpoints. 

In response, a spectrum of defenses has emerged. 

Adversarial training—incorporating adversarial examples 

into the training set—remains a cornerstone, shown to 

significantly raise the bar for attackers (Madry et al., 

2018). However, this technique requires large volumes of 

adversarial data and extended training times, which are 

impractical for on‐device learning. Certified defenses like 

randomized smoothing (Cohen, Rosenfeld, & Kolter, 

2019) offer formal guarantees by predicting over noise‐

augmented inputs and certifying that no adversarial 
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perturbation within a specified radius can change the 

output. Yet, the Monte Carlo sampling required for 

certification introduces tens of milliseconds of overhead 

per inference, straining edge device budgets. 

Lightweight preprocessing defenses such as feature 

squeezing (Xu, Evans, & Qi, 2017) aim to remove 

adversarial noise by reducing input complexity—for 

example, by lowering bit depth or applying spatial 

smoothing—effectively collapsing high‐frequency 

perturbations. While computationally cheap, feature 

squeezing alone cannot defend against adaptive attackers 

who incorporate the squeezing transform into their attack 

pipeline. Hybrid approaches have been proposed: Salman 

et al. (2020) combined adversarial training with denoising 

autoencoders to bolster image‐based defenses; Wang et 

al. (2021) explored edge‐cloud collaborative defenses, 

offloading certification and analysis to gateway nodes. 

Specific to IoT, Yan et al. (2018) evaluated FGSM and 

PGD attacks on embedded vision sensors, revealing 

misclassification rates above 75% with minimal 

perturbation budgets. Komkov and Petiushko (2019) 

applied universal perturbations to time‐series sensor 

streams, disrupting industrial anomaly detection systems. 

Shafique and Farooq (2020) demonstrated that resource‐

limited IoT nodes could deploy simple CNN+LSTM 

models for botnet detection, but they remained vulnerable 

to adversarial evasion without additional defenses. 

Our work builds on these insights by architecting a multi‐

layered defense tailored for heterogeneous IoT 

environments. By distributing defense mechanisms across 

device, gateway, and cloud layers, we seek to maximize 

robustness while respecting the stringent latency and 

resource constraints inherent in real‐world deployments. 

STATISTICAL ANALYSIS 

Table 1. Attack Success Rates Before and After 

Defense Mechanisms across 1,000 Test Samples 

Attac

k 

Type 

Baselin

e 

Success 

Rate 

(%) 

After 

Adversari

al 

Training 

(%) 

After Randomized 

Smoothing + Featu

re Squeezing (%) 

FGS

M 

82.4 38.7 12.3 

PGD 85.1 41.5 14.8 

C&W 79.8 36.2 11.5 

 

Figure-3. Attack Success Rates Before and After Defense Mechanisms 

across 1,000 Test Samples 

METHODOLOGY 

To evaluate the efficacy of our hybrid AML defense in 

realistic IoT settings, we constructed a comprehensive 

experimental pipeline reflecting the heterogeneity and 

resource constraints of modern deployments. 

1. System Topology and Dataset Collection  

We simulated an IoT network comprising 100 edge 

devices of three types: 40 RGB-camera modules for 

visual event detection, 30 temperature/humidity sensors, 
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and 30 passive infrared (PIR) motion sensors. All devices 

communicated with a central gateway running on an Intel 

Xeon server, which in turn interfaced with a cloud-hosted 

machine learning service. Over a 30-day period, the 

sensors generated a total of 50,000 labeled instances: 

25,000 normal operation samples and 25,000 anomalies 

(e.g., motion without authorization, abnormal 

temperature fluctuations). Camera frames were labeled 

for presence/absence of target objects; scalar sensors 

flagged threshold-exceedance events. 

2. Model Architectures  

We designed two lightweight models: a convolutional 

neural network (CNN) for image data and a multilayer 

perceptron (MLP) for scalar sensor streams. The CNN 

comprised three convolutional layers (filters=16,32,64; 

kernel=3×3), each followed by ReLU activation and 2×2 

max-pooling, then two fully-connected layers (128, 64 

units) before a softmax output. The MLP featured three 

dense layers (64→32→16) with ReLU activations. Both 

models were trained from scratch on 80% of the dataset 

(40,000 samples), validated on 10% (5,000), and tested on 

the remaining 10% (5,000). 

3. Adversarial Example Generation  

Using the CleverHans library (Papernot et al., 2018), we 

generated adversarial perturbations on test samples via: 

• FGSM: one-step ℓ∞ attack, ε=0.03 

• PGD: multi-step ℓ∞ attack, ε=0.03, 40 iterations, 

step size=0.01 

• Carlini & Wagner (C&W): ℓ₂ attack with 

confidence=0.0, initial constant=0.01, 1,000 

binary search steps 

4. Defense Implementation 

• Adversarial Training: We retrained both CNN 

and MLP by augmenting each mini-batch 

(size=64) with an equal number of adversarial 

examples (FGSM and PGD mixed). Retraining 

spanned 20 epochs, using Adam optimizer 

(lr=0.001), early stopping on validation 

accuracy. 

• Feature Squeezing: For all inputs at inference, 

we applied 4-bit depth quantization (from 

original 8-bit) and a 3×3 median filter. This 

operation ran on the Raspberry Pi 4 edge device, 

adding 0.8 ms per sample. 

• Randomized Smoothing: Certified robustness 

was provided at the gateway: each input was 

perturbed with Gaussian noise (σ=0.25) 50 times 

and passed through the model; final prediction 

was the majority vote. This process added 4.7 ms 

per sample on the Intel Xeon server. 

5. Evaluation Metrics 

• Attack Success Rate (ASR): Percentage of 

adversarial samples that caused 

misclassification. 

• Clean-Data Accuracy: Model accuracy on 

unperturbed test samples. 

• Average Inference Latency (AIL): End-to-end 

time from input arrival at edge to final prediction 

at gateway. Measured separately on Raspberry 

Pi 4 and Intel Xeon. 

RESULTS 

The hybrid defense yielded substantial robustness gains 

while maintaining low latency and high clean-data 

accuracy. 

1. Robustness Improvement  

Baseline models exhibited ASRs of 82.4% (FGSM), 

85.1% (PGD), and 79.8% (C&W). After adversarial 

training alone, ASRs dropped to 38.7%, 41.5%, and 

36.2%, respectively. Incorporating feature squeezing and 

gateway-level randomized smoothing further reduced 

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/


  
 
 

21 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE) 

ISSN (Online): request pending 

Volume-2 Issue-1 || Jan - Mar 2026 || PP. 16-24 https://wjftcse.org/  

ASRs to 12.3%, 14.8%, and 11.5% (Table 1), 

representing >85% relative reduction from baseline. 

2. Latency Overhead  

On Raspberry Pi 4, feature squeezing added 0.8 ms per 

sample; adversarial training incurred no additional 

runtime cost since it is offline. On the Intel Xeon gateway, 

randomized smoothing added 4.7 ms per sample. 

Aggregate edge-to-gateway latency increased by 5.5 ms 

on average, remaining under 10 ms per sample, well 

within typical real-time requirements (e.g., <50 ms for 

many IoT applications). 

3. Accuracy Trade-Offs  

Clean-data accuracy decreased marginally from 94.1% 

(baseline) to 92.3% after adversarial training, and to 

91.7% with the full defense stack—a 2.4 percentage-point 

drop, which is acceptable for many domains requiring 

robust security. 

4. Ablation Insights  

Removing feature squeezing increased ASRs by ~10%, 

indicating its key role in filtering residual adversarial 

noise. Reducing Monte Carlo samples in smoothing 

below 30 degraded certified robustness by 5–7 percentage 

points, highlighting the importance of sufficient 

sampling. 

CONCLUSION 

Securing IoT ecosystems against adversarial machine 

learning (AML) attacks requires a multifaceted approach 

that reconciles the competing priorities of robustness, 

real-time responsiveness, and resource efficiency. In this 

work, we demonstrated that a hybrid defense 

framework—composed of offline adversarial training, 

on-device feature squeezing, and gateway-level 

randomized smoothing—can dramatically reduce attack 

success rates from over 80% to under 15%, while 

incurring only modest performance trade-offs. 

Specifically, the integration of feature squeezing on edge 

devices filters out high-frequency adversarial noise with 

an average latency penalty of less than 1 ms, and 

gateway-level randomized smoothing provides formal 

robustness guarantees with an additional 4.7 ms per 

inference. 

Beyond the quantitative improvements, our findings 

underscore several practical insights for IoT practitioners: 

1. Strategic Offloading of Computation  

By relegating the more compute-intensive 

randomized smoothing to centralized gateways 

or cloud nodes, resource-constrained IoT 

endpoints can maintain low-latency inference, 

preserving real-time operation in 

latency-sensitive applications such as 

autonomous navigation or industrial control 

systems. 

2. Modular Defense Composition  

The observed synergy between adversarial 

training, feature squeezing, and smoothing 

suggests that no single defense suffices against 

the evolving landscape of AML attacks. Instead, 

a layered architecture—where each component 

addresses different facets of adversarial risk—

yields more comprehensive protection. 

3. Trade-Off Calibration  

While our experiments show only a 2.4% drop in 

clean-data accuracy, domain-specific 

requirements may tolerate different levels of 

accuracy loss. Practitioners should calibrate 

adversarial training parameters (e.g., 

perturbation budgets, adversarial ratio in 

training) and smoothing sampling counts to align 

with their unique accuracy-latency-robustness 

objectives. 

4. Scalability and Adaptation  

As IoT deployments scale to thousands or 
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millions of devices, automated orchestration of 

defense parameter updates (e.g., noise levels, 

filter settings) becomes critical. Integrating these 

mechanisms within a federated learning or over-

the-air-update framework can enable dynamic 

adaptation to emerging adversarial threats 

without manual reconfiguration. 

5. Comprehensive Threat Modeling  

Our study focused on image and scalar-sensor 

perturbations, but IoT ecosystems encompass a 

broader diversity of modalities—including 

audio, RF signals, and complex multi-sensor 

fusion pipelines. Extending the defense 

framework to these modalities, and conducting 

adversarial threat modeling at the system-level 

(network routing, protocol manipulation), 

represents an important next step. 

6. Operational Considerations  

Real-world IoT deployments must also account 

for factors such as intermittent connectivity, 

power constraints, and regulatory compliance. 

Lightweight defenses like feature squeezing can 

be implemented within existing firmware 

updates, while gateway-level smoothing can 

leverage secure enclaves or trusted execution 

environments (TEEs) to protect noise-generation 

processes from tampering. 

In summary, the proposed hybrid defense framework 

offers a pragmatic, scalable blueprint for enhancing the 

security posture of ML-enabled IoT systems. By 

balancing offline robustness, on-device pre-filtering, and 

gateway certification, practitioners can achieve a 

secure-by-design architecture that withstands 

state-of-the-art adversarial attacks. Future work will delve 

into automated defense orchestration, real-world field 

validations across varied IoT domains, and integration 

with privacy-preserving collaborative learning paradigms 

to further fortify the edge intelligence frontier. 
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