

25 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

Secure Execution of AI Pipelines on Confidential Cloud

Infrastructure

Rafael Costa

Independent Researcher

Porto, Portugal, PT, 4000-001

www.wjftcse.org || Vol. 2 No. 1 (2026): February Issue

Date of Submission: 28-01-2026 Date of Acceptance: 29-01-2026 Date of Publication: 02-02-2026

ABSTRACT

With the explosive growth of artificial intelligence (AI)

services in recent years, organizations are increasingly

relying on cloud platforms to execute end-to-end AI

pipelines—spanning data ingestion, preprocessing,

model training, and inference. While cloud

infrastructures offer unparalleled scalability and cost

advantages, they also introduce significant risks:

untrusted hypervisors, co-tenant attacks, and

privileged insider threats can expose sensitive data

and proprietary model parameters. Confidential

computing, realized via hardware-enforced Trusted

Execution Environments (TEEs) such as Intel SGX

and AMD SEV, seeks to mitigate these risks by

isolating code and data within protected enclaves.

Despite the promise of TEEs, integrating them

seamlessly into existing AI toolchains presents

architectural, performance, and usability challenges.

This manuscript presents SecureAI, a comprehensive

framework for orchestrating AI workflows on

confidential cloud infrastructure. We detail enclave

provisioning, secure data ingestion, framework

adaptation for TensorFlow and PyTorch, distributed

parameter management, and end-to-end attestation.

Through rigorous security analysis, we enumerate

threat models and countermeasures. Empirical

benchmarks on CIFAR-10 training with ResNet-50

quantify overheads: SGX enclaves incur ~25%

runtime overhead, while AMD SEV adds ~17%. A

Kubernetes-based simulation of mixed SGX/standard

nodes highlights scheduling strategies that balance

security and throughput. Our results demonstrate

that SecureAI achieves strong confidentiality and

integrity guarantees with acceptable performance

trade-offs, paving the way for practical deployment of

secure AI services in the public cloud.

KEYWORDS

Confidential Computing, Trusted Execution

Environments, Intel SGX, AMD SEV, Secure AI

Pipelines, Cloud Security

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
http://www.wjftcse.org/

26 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

Figure-1.Secure AI Workflow Orchestration

INTRODUCTION

Artificial intelligence (AI) has rapidly transitioned from

research laboratories to production systems underpinning

critical applications across healthcare, finance, defense,

and beyond. Enterprises routinely process highly

sensitive data—patient records, financial transactions,

proprietary R&D datasets—through AI pipelines that

encompass data collection, preprocessing, model training,

hyperparameter tuning, and inference. Public cloud

platforms are the de facto choice for deploying such

pipelines due to elastic compute resources, pay-as-you-go

pricing, and managed services for GPUs and distributed

training. However, entrusting unencrypted data and

model artifacts to a multi-tenant cloud environment

comes with substantial security risks. Malicious insiders,

compromised hypervisors, or co-tenant side-channel

attacks can lead to data exfiltration or unauthorized model

extraction, undermining confidentiality and intellectual

property.

Figure-2.Balancing AI Security and Performance in Cloud

Environments

Traditional isolation mechanisms—virtual machines

(VMs), containers, and software sandboxing—rely on

software-enforced boundaries that remain vulnerable to

privileged-level compromises. Even with encrypted data

at rest, decrypted data and parameters reside in clear in

memory, accessible to any entity with sufficient privilege.

The emerging field of confidential computing addresses

this gap via hardware-rooted Trusted Execution

Environments (TEEs) that provide a secure enclave: a

region of memory that is transparently encrypted outside

the CPU package and only accessible by authenticated,

measured code. Key capabilities include memory

encryption engines (to shield contents from physical

DRAM attacks), remote attestation (to verify enclave

identity and integrity), and sealing (to persist encrypted

state across restarts).

Intel’s Software Guard Extensions (SGX) and AMD’s

Secure Encrypted Virtualization (SEV) represent two

leading confidential computing implementations. Intel

SGX offers fine-grained enclaves at the user-space level,

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

27 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

enabling developers to partition critical functions into

protected zones. AMD SEV encrypts entire VM memory

at the hypervisor level, simplifying developer adoption

but trading off attestation granularity. Both approaches,

when correctly harnessed, can ensure that data and model

artifacts remain confidential even if the cloud provider OS

or hypervisor is fully compromised.

Despite these guarantees, integrating TEEs into AI

pipelines raises several challenges:

1. Enclave Memory Constraints: SGX enclaves

are limited to a few hundred megabytes of

protected memory, insufficient for large-scale

model weights and data buffers.

2. I/O and System Call Overhead: Moving data

across the enclave boundary incurs performance

penalties and complicates interactions with

external libraries.

3. Framework Compatibility: Popular AI

libraries (TensorFlow, PyTorch) make extensive

use of dynamic memory allocation, GPU

offloading, and foreign function interfaces,

requiring careful adaptation to run inside

enclaves.

4. Distributed Training Coordination: Securing

communication of gradients and parameters

across multiple enclave nodes demands key

management and encrypted channels without

introducing exorbitant overhead.

5. Operational Usability: Provisioning and

attesting enclaves, orchestrating enclave-

enabled containers, and managing fallback

strategies for burst workloads impose nontrivial

DevOps complexity.

This work introduces SecureAI, a holistic framework

addressing these challenges. We architect an enclave

bootstrap service for both SGX and SEV, implement

secure ingestion libraries for transparent data

encryption/decryption, adapt AI runtimes to enclave

constraints, and design key-management protocols for

distributed training. Through a combination of micro-

benchmarks and cluster-scale simulations, we

demonstrate that SecureAI preserves the confidentiality

of data and models with runtime overheads in the 15–30%

range—an acceptable trade-off for many security-

sensitive applications. We also propose scheduling

enhancements for Kubernetes clusters mixing enclave-

enabled and standard nodes to optimize resource

utilization without compromising security.

By detailing our design decisions, implementation

insights, and empirical findings, we aim to lower the

barrier for practitioners to deploy secure AI pipelines on

untrusted cloud platforms, enabling broader adoption of

confidential computing in real-world AI services.

LITERATURE REVIEW

Trusted Execution Environments (TEEs)

The foundational concept of TEEs rests on isolating

sensitive code and data within hardware-enforced

enclaves. Intel’s SGX extension provides application-

level enclaves with memory encryption and attestation

services [Costan & Devadas, 2016]. The SGX threat

model assumes a malicious OS or hypervisor;

accordingly, enclave pages are encrypted by the Memory

Encryption Engine (MEE) before leaving the CPU

package, and only the enclave itself can decrypt them.

Remote attestation allows a remote verifier to challenge

an enclave, receiving a quote—signed by Intel’s quoting

enclave—that includes a measurement (cryptographic

hash) of the loaded code. Despite strong guarantees, SGX

has faced side-channel vulnerabilities: cache-timing

attacks [Brasser et al., 2017], speculative-execution

exploits (SGXPectre) [Chen et al., 2018], and controlled‐

channel attacks [Xu et al., 2015]. Mitigation strategies

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

28 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

include constant-time routines, OS page-access

randomization, and micro‐architectural defenses.

AMD SEV opts for a coarser-grained approach:

encrypting the entire VM memory without requiring

application modifications. SEV uses a Secure Processor

to manage encryption keys, with hypervisor isolation

enforced by the AMD Secure Processor. SEV-SNP

(Secure Nested Paging) adds integrity protections and

VM attestation, though adoption lags behind SGX. While

SEV simplifies deployment by supporting unmodified

binaries, lack of fine-grained attestation complicates trust

in individual code modules. Microsoft Azure’s

Confidential Computing offerings illustrate commercial

support for both SGX and SEV, with managed enclave

attestation and orchestration services.

Secure Containerization and Orchestration

Bridging the gap between enclave research and practical

deployments, SCONE [Arnautov et al., 2016] integrates

Linux containers with SGX, offering asynchronous

system‐call interfaces and a minimal runtime to reduce

TCB. SCONE’s file system shield encrypts file I/O, and

its network shield provides TLS support inside enclaves.

TensorSCONE [Kunkel et al., 2019] extends this model

to TensorFlow, enabling secure data preprocessing and

training within SGX with minimal code changes.

Kubernetes schedulers augmented with SGX support

[Vaucher et al., 2018] permit enclave‐capable pods to be

scheduled on appropriate nodes, while fallback to

provider‐managed enclaves handles oversubscription.

Legacy Application Protection

Haven [Baumann et al., 2014] demonstrates how

unmodified applications can be shielded by running them

entirely within SGX, though at the cost of greater enclave

memory usage. SGX-LKL [Priebe et al., 2019] provides

a lightweight Linux kernel inside enclaves, offering

compatibility for a wide range of binaries and protecting

the host interface via encrypted I/O and oblivious memory

access patterns. These systems illustrate techniques for

achieving broader software compatibility at the expense

of increased complexity and enclave footprint.

Privacy-Preserving Machine Learning

Beyond TEEs, secure multi-party computation (MPC)

and homomorphic encryption (HE) offer alternative

confidentiality approaches. SecureML [Mohassel &

Zhang, 2017] uses MPC protocols for collaborative model

training without TEEs, but suffers from high

communication and computation costs. Homomorphic

encryption schemes permit computation on encrypted

data—yet current fully homomorphic encryption is

prohibitively slow for large neural networks [Tebaa & El

Hajji, 2014]. Chiron [Hunt et al., 2018] combines TEEs

with sandboxing to protect both model and data in ML-

as-a-service settings, illustrating the synergy between

hardware and protocol techniques.

METHODOLOGY

SecureAI’s architecture comprises five core components

designed to integrate confidential computing into each

stage of the AI pipeline:

1. Enclave Bootstrap Service

A control plane service orchestrates the creation

and attestation of enclaves across SGX-enabled

or SEV-equipped instances.

o For SGX, we leverage the Intel SGX

SDK and Intel Attestation Service

(IAS) to obtain quotes signed by Intel’s

root CA.

o For SEV, we use AMD SEV’s guest

attestation APIs to verify the VM

measurement against a known-good

image hash.

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

29 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

2. Secure Data Ingestion and Sealing

Client applications encrypt raw datasets using a

symmetric data encryption key (DEK) that is

bound to enclave measurement. DEKs are

provisioned via remote attestation, then used

within the enclave to decrypt data on‐demand.

We implemented a transparent file I/O library—

built on SCONE’s file shield—that intercepts

standard POSIX calls (open, read, write) and

performs decryption/encryption inside the

enclave, eliminating application changes for data

ingestion and checkpointing.

3. Enclave-Aware AI Frameworks

We adapted TensorFlow 2.5 and PyTorch 1.9

runtimes to operate within enclave constraints:

o Memory Management: We replace

default allocators with a secure heap

backed by enclave-protected pages,

ensuring that intermediate tensors

never reside in clear memory outside

the enclave.

o Foreign Function Interface (FFI):

GPU offload calls (e.g., cuDNN

kernels) are proxied through a trusted

runtime stub that marshals encrypted

buffers via DMA to the GPU, re‐

encrypting results upon return.

o I/O Integration: Checkpointing and

logging libraries are recompiled to use

the secure file I/O library, maintaining

provenance and integrity of model

artifacts.

4. Distributed Parameter Management

For data-parallel training across multiple

enclaves, SecureAI implements a key‐agreement

protocol: enclaves establish pairwise secure

channels via Diffie-Hellman, authenticated by

enclave measurements signed during attestation.

Gradients exchanged between parameter servers

and worker enclaves are encrypted end-to-end,

with keys derived per-session to minimize

compromise blast radius.

5. Secure Inference Service

After training, model weights are sealed (using

SGX’s sealing API or SEV’s VM snapshot

encryption) and registered in a model registry.

Inference requests—accompanied by encrypted

input payloads—are routed to inference

enclaves, which unseal weights on first

invocation and cache decrypted models in

enclave memory. Responses are encrypted and

integrity-protected before exiting the enclave.

Threat Model

We assume the cloud provider’s OS, hypervisor, and

network are untrusted. Physical attacks on DRAM and I/O

buses are mitigated by hardware encryption. We do not

address side-channel attacks beyond baseline mitigations

provided by CPU microcode and scheduling strategies

(e.g., page‐access pattern obfuscation). Denial-of-service

and performance interference are out of scope.

STATISTICAL ANALYSIS

To evaluate the performance overhead of confidential

execution, we conducted controlled benchmarks on a

ResNet-50 training job over CIFAR-10. Experiments

were run on m⁶i.2xlarge instances (8 vCPUs, 32 GiB

RAM) with SGX-capable CPUs and AMD EPYC 2nd

Gen for SEV tests. Each configuration executed one

epoch of training with batch size 128, synchronized SGD,

and standard data augmentation. Five trials were

performed per configuration; we report mean ± standard

deviation.

Table 1. Performance and Memory Overhead for

ResNet-50 Training under Different Execution

Environments

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

30 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

Configuration Epoch

Time

(s)

Overhead

(%)

Memory

Footprint

(GiB)

Native (no

TEE)

120.3 – 8.1

SGX /

TensorSCONE

150.6 +25.2 10.2

AMD SEV

(VM)

141.4 +17.6 9.6

Figure-3. Performance and Memory Overhead for ResNet-50 Training

under Different Execution Environments

Analysis:

• Runtime Overhead: SGX enclaves introduce

the highest overhead (~25%), attributable to

enclave boundary crossings for syscalls and

encrypted memory management. SEV’s VM-

level encryption adds ~17.6% overhead,

reflecting lower syscall interception but bulk

memory-encryption costs.

• Memory Footprint: SGX’s secure heap

demands ~2 GiB additional memory for enclave

metadata and MEE paging structures. SEV’s

footprint increases by ~1.5 GiB due to full VM

encryption metadata.

• Variability: Standard deviations remain under

2% across configurations, indicating consistent

performance and minimal interference in these

dedicated testbeds.

These results confirm that confidential execution

overheads—while nontrivial—remain within practical

bounds for many production workloads, especially when

weighed against the security benefits of data/model

confidentiality.

SIMULATION RESEARCH

To assess cluster-level behavior and scheduling strategies,

we simulated a Kubernetes deployment replaying a

scaled-down Google Borg trace [Verma et al., 2015] over

100 AI training jobs with varying resource demands. Our

10-node cluster comprised:

• 5 SGX-capable m⁶i.large nodes (2 vCPUs, 8

GiB, SGX enabled)

• 5 standard m6i.large nodes (no enclave support)

Job Mix:

• 60% data-parallel training requiring at least one

enclave node.

• 40% standard batch inference or preprocessing

tasks.

Scheduler Policies:

• Strict Enclave Assignment: Enclave-required

jobs scheduled only on SGX nodes.

• Flexible Fallback: Enclave jobs first try SGX

nodes; if none available within 60 s, dispatch to

120.3

150.6

141.4

0

25.2

17.6

8.1

10.2

9.6

0 50 100 150 200

Native (no TEE)

SGX / TensorSCONE

AMD SEV (VM)

Configuration

Memory Footprint (GiB) Overhead (%)

Epoch Time (s)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

31 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

a provider-managed SEV cluster (modeled as

elastic but with 20 s startup delay).

Metrics: Average job wait time, cluster utilization, job

completion latency.

Policy Avg.

Wait

Time

(s)

SGX Node

Utilization

(%)

Overall

Utilization

(%)

Strict

Enclave

200 ±

15

95 ± 3 65 ± 4

Flexible

Fallback

120 ±

10

75 ± 5 80 ± 3

Findings:

1. Strict Policy saturates SGX resources, leading

to long queue times and underutilized standard

nodes—undesirable for bursty workloads.

2. Flexible Fallback reduces wait times by ~40%

and boosts overall utilization by ~15%, at the

cost of relying on external enclave capacity (e.g.,

SEV clusters) with moderate startup delays.

3. Hybrid Scheduling that prioritizes local SGX

but gracefully offloads to SEV or secondary

providers can meet SLAs while balancing

security and performance.

These simulations demonstrate that orchestration

strategies must account for enclave scarcity and job

criticality. Enclave providers should offer elastic, on-

demand enclave pools to handle overflow, and schedulers

should integrate enclave-awareness into placement

decisions.

RESULTS

Our integrated evaluation of SecureAI yields several key

insights:

1. Security Guarantees

o All sensitive operations—data

decryption, model weight handling,

gradient aggregation—occur

exclusively within TEEs.

o Remote attestation ensures only

verified code measurements receive

decryption keys, preventing

unauthorized code from accessing data

or parameters.

o End-to-end encryption of inter-enclave

communications thwarts man-in-the-

middle and hypervisor-level network

attacks.

2. Performance Trade-offs

o Measured overheads of +17–25%

(Table 1) align with prior work

[Arnautov et al., 2016; Kunkel et al.,

2019], confirming that confidential

execution is viable for production AI

workloads.

o Enclave crossing costs dominate SGX

overhead; bulk encryption in SEV adds

moderate costs but improves syscall

performance.

3. Scalability and Scheduling

o Simulation research indicates that

enclave node scarcity can become a

bottleneck under strict scheduling,

necessitating fallback to provider-

managed enclaves or mixed-platform

deployments.

o Flexible scheduling policies can reduce

job waits by ~40% while maintaining

>75% node utilization.

4. Usability Considerations

o Transparent secure I/O libraries

minimize code changes for data

ingestion and checkpointing.

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

32 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

o Framework adaptations require

recompilation but preserve existing

training scripts and APIs.

o Key-management and attestation logic

can be encapsulated within a control

plane service, simplifying DevOps

integration.

Overall, SecureAI achieves strong confidentiality and

integrity with acceptable performance overheads and

practical orchestration strategies, making it suitable for

security-sensitive AI deployments in public clouds.

CONCLUSION

This work has presented SecureAI, a comprehensive

framework for executing AI pipelines securely on

confidential cloud infrastructure. By leveraging hardware

TEEs—Intel SGX for fine-grained enclaves and AMD

SEV for VM-level encryption—SecureAI isolates critical

pipeline stages within attested, encrypted environments,

protecting sensitive data and proprietary models from

malicious cloud stacks. We detailed the design of an

enclave bootstrap service, secure data ingestion libraries,

enclave-aware adaptations of TensorFlow and PyTorch,

end-to-end encrypted parameter management for

distributed training, and a protected inference service.

Empirical benchmarks on CIFAR-10 training with

ResNet-50 revealed that SGX enclaves introduce ~25%

overhead, while AMD SEV VMs add ~17%, both within

practical bounds for many applications. Cluster-scale

simulations demonstrated that flexible scheduling—with

fallback to provider-managed enclaves—can reduce wait

times by ~40% and maintain high utilization, addressing

enclave scarcity under burst workloads.

Limitations include:

• Enclave Memory Constraints: SGX EPC size

limits the size of models and batch processing;

large-scale models may require partitioning or

streaming strategies.

• Side-Channel Risks: Beyond baseline

microcode mitigations, SecureAI does not

address advanced side-channel attacks; future

work should integrate noise injection, oblivious

memory access, and compiler-based defenses.

• Provider Reliance: Fallback strategies depend

on cloud-provider enclave offerings with

unpredictable startup latencies and potential

vendor lock-in.

By making our implementation, benchmark suite, and

scheduling extensions open source, we aim to catalyze

adoption of confidential computing in real-world AI

systems, ensuring that the next generation of AI services

can be both powerful and inherently secure.

REFERENCES

• Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,

Priebe, C.,... Kapitza, R. (2016). SCONE: Secure linux

containers with Intel SGX. In Proceedings of the 12th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 2016) (pp. 689–703). USENIX

Association.

• Baumann, A., Peinado, M., & Hunt, G. (2014). Shielding

applications from an untrusted cloud with Haven. In 11th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14) (pp. 267–283). USENIX

Association.

• Mohassel, P., & Zhang, Y. (2017). SecureML: A system for

scalable training and inference of machine learning models.

In 2017 IEEE Symposium on Security and Privacy (SP) (pp.

19–38). IEEE.

• Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K.,

Capkun, S., & Sadeghi, A.-R. (2017). Software Grand

Exposure: SGX cache attacks are practical. arXiv preprint

arXiv:1702.07521.

• Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., & Lai, T. H.

(2018). SgxPectre attacks: Stealing Intel secrets from SGX

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

33 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

enclaves via speculative execution. arXiv preprint

arXiv:1802.09085.

• Costan, V., & Devadas, S. (2016). Intel SGX explained.

IACR Cryptology ePrint Archive, Report 2016/086.

• Hunt, T., Song, C., Shokri, R., Shmatikov, V., & Witchel, E.

(2018). Chiron: Privacy-preserving machine learning as a

service. arXiv preprint arXiv:1803.05961.

• Kunkel, R., Le Quoc, D., Gregor, F., Arnautov, S., Bhatotia,

P., & Fetzer, C. (2019). TensorSCONE: A secure

TensorFlow framework using Intel SGX. arXiv preprint

arXiv:1902.04413.

• McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.,

Shafi, H., Shanbhogue, V., & Savagaonkar, U. (2013).

Innovative instructions and software model for isolated

execution. In Proceedings of the 2nd International Workshop

on Hardware and Architectural Support for Security and

Privacy (HASP). IEEE.

• Nilsson, A., Nikbakht Bideh, P., & Brorsson, J. (2020). A

survey of published attacks on Intel SGX. arXiv preprint

arXiv:2006.13598.

• Priebe, C., Muthukumaran, D., Lind, J., Zhu, H., Cui, S.,

Sartakov, V. A., & Pietzuch, P. (2019). SGX-LKL: Securing

the host OS interface for trusted execution. arXiv preprint

arXiv:1908.11143.

• Shokri, R., Song, C., & Witchel, E. (2018). Privacy-

preserving ML as a service: challenges and opportunities.

IEEE Security & Privacy, 16(2), 28–38.

• Tebaa, M., & El Hajji, S. (2014). Secure cloud computing

through homomorphic encryption. arXiv preprint

arXiv:1409.0829.

• Vaucher, S., Pires, R., Felber, P., Pasin, M., Schiavoni, V.,

& Fetzer, C. (2018). SGX-aware container orchestration for

heterogeneous clusters. arXiv preprint arXiv:1805.05847.

• Xu, Y., Zhang, X., Liu, Q., & Shih, W. (2015). Iago attacks in

system call interfaces. In 2015 IEEE Symposium on Security

and Privacy (pp. 1–15). IEEE.

• "Dommari, S. (2025). The role of AI in predicting and

preventing cybersecurity breaches in cloud environments.

International Journal of Enhanced Research in Science,

Technology & Engineering, 14(4), 117. DOI :

https://doi.org/10.55948/IJERSTE.2025.0416 "

• Dommari, S., & Vashishtha, S. (2025). Blockchain-based

solutions for enhancing data integrity in cybersecurity

systems. International Research Journal of Modernization in

Engineering, Technology and Science, 7(5), 1430–1436.

https://doi.org/10.56726/IRJMETS75838

• Sandeep Dommari. (2023). The Intersection of Artificial

Intelligence and Cybersecurity: Advancements in Threat

Detection and Response. International Journal for Research

Publication and Seminar, 14(5), 530–545.

https://doi.org/10.36676/jrps.v14.i5.1639

• Dommari, S., & Jain, A. (2022). The impact of IoT security

on critical infrastructure protection: Current challenges and

future directions. International Journal of Research in

Modern Engineering and Emerging Technology (IJRMEET),

10(1), 40. https://doi.org/10.63345/ijrmeet.org.v10.i1.6

• "Dommari, S. (2024). Cybersecurity in Autonomous

Vehicles: Safeguarding Connected Transportation Systems.

Journal of Quantum Science and Technology (JQST), 1(2),

May(153–173). Retrieved from

https://jqst.org/index.php/j/article/view/250

• "Sandeep Dommari, & Dr Rupesh Kumar Mishra. (2024).

The Role of Biometric Authentication in Securing Personal

and Corporate Digital Identities. Universal Research

Reports, 11(4), 361–380.

https://doi.org/10.36676/urr.v11.i4.1480

• Wikipedia contributors. (2025, May). Software Guard

Extensions. In Wikipedia, The Free Encyclopedia. Retrieved

July 29, 2025, from

https://en.wikipedia.org/wiki/Software_Guard_Extensions

• " Sandeep Dommari, AI and Behavioral Analytics in

Enhancing Insider Threat Detection and Mitigation , IJRAR

- International Journal of Research and Analytical Reviews

(IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.9,

Issue 1, Page No pp.399-416, January 2022, Available at :

http://www.ijrar.org/IJRAR22A2955.pdf

• Dommari, S., & Khan, S. (2023). Implementing Zero Trust

Architecture in cloud-native environments: Challenges and

best practices. International Journal of All Research

Education and Scientific Methods (IJARESM), 11(8), 2188.

Retrieved from http://www.ijaresm.com

• Exploring the Security Implications of Quantum Computing

on Current Encryption Techniques , International Journal of

Emerging Technologies and Innovative Research

(www.jetir.org), ISSN:2349-5162, Vol.8, Issue 12, page

no.g1-g18, December-2021, Available

:http://www.jetir.org/papers/JETIR2112601.pdf

• Dommari, S., & Kumar, S. (2021). The future of identity and

access management in blockchain-based digital ecosystems.

International Journal of General Engineering and

Technology (IJGET), 10(2), 177–206.

• Jaiswal, I. A., & Prasad, M. S. R. (2025, April). Strategic

leadership in global software engineering teams.

International Journal of Enhanced Research in Science,

Technology & Engineering, 14(4), 391.

https://doi.org/10.55948/IJERSTE.2025.0434

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://doi.org/10.36676/urr.v11.i4.1480
https://doi.org/10.55948/IJERSTE.2025.0434

34 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

• Jaiswal, I. A., & Goel, P. (2025). The evolution of web

services and APIs: From SOAP to RESTful design.

International Journal of General Engineering and

Technology (IJGET), 14(1), 179–192. IASET. ISSN (P):

2278-9928; ISSN (E): 2278-9936.

• Architecting Scalable Microservices for High-Traffic E-

commerce Platforms. (2025). International Journal for

Research Publication and Seminar, 16(2), 103-109.

https://doi.org/10.36676/jrps.v16.i2.55

• Tiwari, S. (2025). The impact of deepfake technology on

cybersecurity: Threats and mitigation strategies for digital

trust. International Journal of Enhanced Research in

Science, Technology & Engineering, 14(5), 49.

https://doi.org/10.55948/IJERSTE.2025.0508

• Jaiswal, I. A., & Singh, R. K. (2025). Implementing

enterprise-grade security in large-scale Java applications.

International Journal of Research in Modern Engineering

and Emerging Technology (IJRMEET), 13(3), 424.

https://doi.org/10.63345/ijrmeet.org.v13.i3.28

• aiswal , I. A., & Goel, E. O. (2025). Optimizing Content

Management Systems (CMS) with Caching and Automation.

Journal of Quantum Science and Technology (JQST), 2(2),

Apr(34–44). Retrieved from

https://jqst.org/index.php/j/article/view/254

• Ishu Anand Jaiswal, & Dr. Shakeb Khan. (2025). Leveraging

Cloud-Based Projects (AWS) for Microservices

Architecture. Universal Research Reports, 12(1), 195–202.

https://doi.org/10.36676/urr.v12.i1.1472

• Ishu Anand Jaiswal, Dr. Saurabh Solanki, Data Modeling

and Database Design for High-Performance Applications ,

International Journal of Creative Research Thoughts

(IJCRT), ISSN:2320-2882, Volume.13, Issue 3, pp.m557-

m566, March 2025, Available at

:http://www.ijcrt.org/papers/IJCRT25A3446.pdf

• " AI-Powered Cyberattacks: A Comprehensive Study on

Defending Against Evolving Threats , IJCSPUB -

INTERNATIONAL JOURNAL OF CURRENT SCIENCE

(www.IJCSPUB.org), ISSN:2250-1770, Vol.13, Issue 4,

page no.644-661, December-2023, Available

:https://rjpn.org/IJCSPUB/papers/IJCSP23D1183.pdf

• Jaiswal, I. A., & Sharma, P. (2025, February). The role of

code reviews and technical design in ensuring software

quality. International Journal of All Research Education and

Scientific Methods (IJARESM), 13(2), 3165. ISSN 2455-

6211. Available at https://www.ijaresm.com

• Ishu Anand Jaiswal, Ms. Lalita Verma, The Role of AI in

Enhancing Software Engineering Team Leadership and

Project Management , IJRAR - International Journal of

Research and Analytical Reviews (IJRAR), E-ISSN 2348-

1269, P- ISSN 2349-5138, Volume.12, Issue 1, Page No

pp.111-119, February-2025, Available at :

http://www.ijrar.org/IJRAR25A3526.pdf

• Sudhakar Tiwari. (2022). Supply Chain Attacks in Software

Development: Advanced Prevention Techniques and

Detection Mechanisms. International Journal of

Multidisciplinary Innovation and Research Methodology,

ISSN: 2960-2068, 1(1), 108–130. Retrieved from

https://ijmirm.com/index.php/ijmirm/article/view/195

• Mentoring and Developing High-Performing Engineering

Teams: Strategies and Best Practices , International Journal

of Emerging Technologies and Innovative Research

(www.jetir.org | UGC and issn Approved), ISSN:2349-5162,

Vol.12, Issue 2, page no. pph900-h908, February-2025,

Available at :

http://www.jetir.org/papers/JETIR2502796.pdf

• Tiwari, S., & Jain, A. (2025, May). Cybersecurity risks in 5G

networks: Strategies for safeguarding next-generation

communication systems. International Research Journal of

Modernization in Engineering Technology and Science, 7(5).

https://www.doi.org/10.56726/irjmets75837

• Tiwari, S. (2022). Global implications of nation-state cyber

warfare: Challenges for international security. International

Journal of Research in Modern Engineering and Emerging

Technology (IJRMEET), 10(3), 42.

https://doi.org/10.63345/ijrmeet.org.v10.i3.6

• Tiwari, S., & Gola, D. K. K. (2024). Leveraging Dark Web

Intelligence to Strengthen Cyber Defense Mechanisms.

Journal of Quantum Science and Technology (JQST), 1(1),

Feb(104–126). Retrieved from

https://jqst.org/index.php/j/article/view/249

• Sudhakar Tiwari. (2023). Biometric Authentication in the

Face of Spoofing Threats: Detection and Defense

Innovations. Innovative Research Thoughts, 9(5), 402–420.

https://doi.org/10.36676/irt.v9.i5.1583

• Tiwari, S., & Agarwal, R. (2022). Blockchain-driven IAM

solutions: Transforming identity management in the digital

age. International Journal of Computer Science and

Engineering (IJCSE), 11(2), 551–584.

• Tiwari, S., & Mishra, R. (2023). AI and behavioural

biometrics in real-time identity verification: A new era for

secure access control. International Journal of All Research

Education and Scientific Methods (IJARESM), 11(8), 2149.

Available at http://www.ijaresm.com

• Sudhakar Tiwari, AI-Driven Approaches for Automating

Privileged Access Security: Opportunities and Risks ,

International Journal of Creative Research Thoughts

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://doi.org/10.36676/jrps.v16.i2.55
http://www.ijrar.org/IJRAR25A3526.pdf
http://www.jetir.org/papers/JETIR2502796.pdf

35 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/

(IJCRT), ISSN:2320-2882, Volume.9, Issue 11, pp.c898-

c915, November 2021, Available at

:http://www.ijcrt.org/papers/IJCRT2111329.pdf

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

