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ABSTRACT 

With the explosive growth of artificial intelligence (AI) 

services in recent years, organizations are increasingly 

relying on cloud platforms to execute end-to-end AI 

pipelines—spanning data ingestion, preprocessing, 

model training, and inference. While cloud 

infrastructures offer unparalleled scalability and cost 

advantages, they also introduce significant risks: 

untrusted hypervisors, co-tenant attacks, and 

privileged insider threats can expose sensitive data 

and proprietary model parameters. Confidential 

computing, realized via hardware-enforced Trusted 

Execution Environments (TEEs) such as Intel SGX 

and AMD SEV, seeks to mitigate these risks by 

isolating code and data within protected enclaves. 

Despite the promise of TEEs, integrating them 

seamlessly into existing AI toolchains presents 

architectural, performance, and usability challenges. 

This manuscript presents SecureAI, a comprehensive 

framework for orchestrating AI workflows on 

confidential cloud infrastructure. We detail enclave 

provisioning, secure data ingestion, framework 

adaptation for TensorFlow and PyTorch, distributed 

parameter management, and end-to-end attestation. 

Through rigorous security analysis, we enumerate 

threat models and countermeasures. Empirical 

benchmarks on CIFAR-10 training with ResNet-50 

quantify overheads: SGX enclaves incur ~25% 

runtime overhead, while AMD SEV adds ~17%. A 

Kubernetes-based simulation of mixed SGX/standard 

nodes highlights scheduling strategies that balance 

security and throughput. Our results demonstrate 

that SecureAI achieves strong confidentiality and 

integrity guarantees with acceptable performance 

trade-offs, paving the way for practical deployment of 

secure AI services in the public cloud.  
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Figure-1.Secure AI Workflow Orchestration 

INTRODUCTION 

Artificial intelligence (AI) has rapidly transitioned from 

research laboratories to production systems underpinning 

critical applications across healthcare, finance, defense, 

and beyond. Enterprises routinely process highly 

sensitive data—patient records, financial transactions, 

proprietary R&D datasets—through AI pipelines that 

encompass data collection, preprocessing, model training, 

hyperparameter tuning, and inference. Public cloud 

platforms are the de facto choice for deploying such 

pipelines due to elastic compute resources, pay-as-you-go 

pricing, and managed services for GPUs and distributed 

training. However, entrusting unencrypted data and 

model artifacts to a multi-tenant cloud environment 

comes with substantial security risks. Malicious insiders, 

compromised hypervisors, or co-tenant side-channel 

attacks can lead to data exfiltration or unauthorized model 

extraction, undermining confidentiality and intellectual 

property. 

 

Figure-2.Balancing AI Security and Performance in Cloud 

Environments 

Traditional isolation mechanisms—virtual machines 

(VMs), containers, and software sandboxing—rely on 

software-enforced boundaries that remain vulnerable to 

privileged-level compromises. Even with encrypted data 

at rest, decrypted data and parameters reside in clear in 

memory, accessible to any entity with sufficient privilege. 

The emerging field of confidential computing addresses 

this gap via hardware-rooted Trusted Execution 

Environments (TEEs) that provide a secure enclave: a 

region of memory that is transparently encrypted outside 

the CPU package and only accessible by authenticated, 

measured code. Key capabilities include memory 

encryption engines (to shield contents from physical 

DRAM attacks), remote attestation (to verify enclave 

identity and integrity), and sealing (to persist encrypted 

state across restarts). 

Intel’s Software Guard Extensions (SGX) and AMD’s 

Secure Encrypted Virtualization (SEV) represent two 

leading confidential computing implementations. Intel 

SGX offers fine-grained enclaves at the user-space level, 
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enabling developers to partition critical functions into 

protected zones. AMD SEV encrypts entire VM memory 

at the hypervisor level, simplifying developer adoption 

but trading off attestation granularity. Both approaches, 

when correctly harnessed, can ensure that data and model 

artifacts remain confidential even if the cloud provider OS 

or hypervisor is fully compromised. 

Despite these guarantees, integrating TEEs into AI 

pipelines raises several challenges: 

1. Enclave Memory Constraints: SGX enclaves 

are limited to a few hundred megabytes of 

protected memory, insufficient for large-scale 

model weights and data buffers. 

2. I/O and System Call Overhead: Moving data 

across the enclave boundary incurs performance 

penalties and complicates interactions with 

external libraries. 

3. Framework Compatibility: Popular AI 

libraries (TensorFlow, PyTorch) make extensive 

use of dynamic memory allocation, GPU 

offloading, and foreign function interfaces, 

requiring careful adaptation to run inside 

enclaves. 

4. Distributed Training Coordination: Securing 

communication of gradients and parameters 

across multiple enclave nodes demands key 

management and encrypted channels without 

introducing exorbitant overhead. 

5. Operational Usability: Provisioning and 

attesting enclaves, orchestrating enclave-

enabled containers, and managing fallback 

strategies for burst workloads impose nontrivial 

DevOps complexity. 

This work introduces SecureAI, a holistic framework 

addressing these challenges. We architect an enclave 

bootstrap service for both SGX and SEV, implement 

secure ingestion libraries for transparent data 

encryption/decryption, adapt AI runtimes to enclave 

constraints, and design key-management protocols for 

distributed training. Through a combination of micro-

benchmarks and cluster-scale simulations, we 

demonstrate that SecureAI preserves the confidentiality 

of data and models with runtime overheads in the 15–30% 

range—an acceptable trade-off for many security-

sensitive applications. We also propose scheduling 

enhancements for Kubernetes clusters mixing enclave-

enabled and standard nodes to optimize resource 

utilization without compromising security. 

By detailing our design decisions, implementation 

insights, and empirical findings, we aim to lower the 

barrier for practitioners to deploy secure AI pipelines on 

untrusted cloud platforms, enabling broader adoption of 

confidential computing in real-world AI services. 

LITERATURE REVIEW 

Trusted Execution Environments (TEEs) 

The foundational concept of TEEs rests on isolating 

sensitive code and data within hardware-enforced 

enclaves. Intel’s SGX extension provides application-

level enclaves with memory encryption and attestation 

services [Costan & Devadas, 2016]. The SGX threat 

model assumes a malicious OS or hypervisor; 

accordingly, enclave pages are encrypted by the Memory 

Encryption Engine (MEE) before leaving the CPU 

package, and only the enclave itself can decrypt them. 

Remote attestation allows a remote verifier to challenge 

an enclave, receiving a quote—signed by Intel’s quoting 

enclave—that includes a measurement (cryptographic 

hash) of the loaded code. Despite strong guarantees, SGX 

has faced side-channel vulnerabilities: cache-timing 

attacks [Brasser et al., 2017], speculative-execution 

exploits (SGXPectre) [Chen et al., 2018], and controlled‐

channel attacks [Xu et al., 2015]. Mitigation strategies 
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include constant-time routines, OS page-access 

randomization, and micro‐architectural defenses. 

AMD SEV opts for a coarser-grained approach: 

encrypting the entire VM memory without requiring 

application modifications. SEV uses a Secure Processor 

to manage encryption keys, with hypervisor isolation 

enforced by the AMD Secure Processor. SEV-SNP 

(Secure Nested Paging) adds integrity protections and 

VM attestation, though adoption lags behind SGX. While 

SEV simplifies deployment by supporting unmodified 

binaries, lack of fine-grained attestation complicates trust 

in individual code modules. Microsoft Azure’s 

Confidential Computing offerings illustrate commercial 

support for both SGX and SEV, with managed enclave 

attestation and orchestration services. 

Secure Containerization and Orchestration 

Bridging the gap between enclave research and practical 

deployments, SCONE [Arnautov et al., 2016] integrates 

Linux containers with SGX, offering asynchronous 

system‐call interfaces and a minimal runtime to reduce 

TCB. SCONE’s file system shield encrypts file I/O, and 

its network shield provides TLS support inside enclaves. 

TensorSCONE [Kunkel et al., 2019] extends this model 

to TensorFlow, enabling secure data preprocessing and 

training within SGX with minimal code changes. 

Kubernetes schedulers augmented with SGX support 

[Vaucher et al., 2018] permit enclave‐capable pods to be 

scheduled on appropriate nodes, while fallback to 

provider‐managed enclaves handles oversubscription. 

Legacy Application Protection 

Haven [Baumann et al., 2014] demonstrates how 

unmodified applications can be shielded by running them 

entirely within SGX, though at the cost of greater enclave 

memory usage. SGX-LKL [Priebe et al., 2019] provides 

a lightweight Linux kernel inside enclaves, offering 

compatibility for a wide range of binaries and protecting 

the host interface via encrypted I/O and oblivious memory 

access patterns. These systems illustrate techniques for 

achieving broader software compatibility at the expense 

of increased complexity and enclave footprint. 

Privacy-Preserving Machine Learning 

Beyond TEEs, secure multi-party computation (MPC) 

and homomorphic encryption (HE) offer alternative 

confidentiality approaches. SecureML [Mohassel & 

Zhang, 2017] uses MPC protocols for collaborative model 

training without TEEs, but suffers from high 

communication and computation costs. Homomorphic 

encryption schemes permit computation on encrypted 

data—yet current fully homomorphic encryption is 

prohibitively slow for large neural networks [Tebaa & El 

Hajji, 2014]. Chiron [Hunt et al., 2018] combines TEEs 

with sandboxing to protect both model and data in ML-

as-a-service settings, illustrating the synergy between 

hardware and protocol techniques. 

METHODOLOGY 

SecureAI’s architecture comprises five core components 

designed to integrate confidential computing into each 

stage of the AI pipeline: 

1. Enclave Bootstrap Service  

A control plane service orchestrates the creation 

and attestation of enclaves across SGX-enabled 

or SEV-equipped instances. 

o For SGX, we leverage the Intel SGX 

SDK and Intel Attestation Service 

(IAS) to obtain quotes signed by Intel’s 

root CA. 

o For SEV, we use AMD SEV’s guest 

attestation APIs to verify the VM 

measurement against a known-good 

image hash. 
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2. Secure Data Ingestion and Sealing  

Client applications encrypt raw datasets using a 

symmetric data encryption key (DEK) that is 

bound to enclave measurement. DEKs are 

provisioned via remote attestation, then used 

within the enclave to decrypt data on‐demand. 

We implemented a transparent file I/O library—

built on SCONE’s file shield—that intercepts 

standard POSIX calls (open, read, write) and 

performs decryption/encryption inside the 

enclave, eliminating application changes for data 

ingestion and checkpointing. 

3. Enclave-Aware AI Frameworks  

We adapted TensorFlow 2.5 and PyTorch 1.9 

runtimes to operate within enclave constraints: 

o Memory Management: We replace 

default allocators with a secure heap 

backed by enclave-protected pages, 

ensuring that intermediate tensors 

never reside in clear memory outside 

the enclave. 

o Foreign Function Interface (FFI): 

GPU offload calls (e.g., cuDNN 

kernels) are proxied through a trusted 

runtime stub that marshals encrypted 

buffers via DMA to the GPU, re‐

encrypting results upon return. 

o I/O Integration: Checkpointing and 

logging libraries are recompiled to use 

the secure file I/O library, maintaining 

provenance and integrity of model 

artifacts. 

4. Distributed Parameter Management  

For data-parallel training across multiple 

enclaves, SecureAI implements a key‐agreement 

protocol: enclaves establish pairwise secure 

channels via Diffie-Hellman, authenticated by 

enclave measurements signed during attestation. 

Gradients exchanged between parameter servers 

and worker enclaves are encrypted end-to-end, 

with keys derived per-session to minimize 

compromise blast radius. 

5. Secure Inference Service  

After training, model weights are sealed (using 

SGX’s sealing API or SEV’s VM snapshot 

encryption) and registered in a model registry. 

Inference requests—accompanied by encrypted 

input payloads—are routed to inference 

enclaves, which unseal weights on first 

invocation and cache decrypted models in 

enclave memory. Responses are encrypted and 

integrity-protected before exiting the enclave. 

Threat Model  

We assume the cloud provider’s OS, hypervisor, and 

network are untrusted. Physical attacks on DRAM and I/O 

buses are mitigated by hardware encryption. We do not 

address side-channel attacks beyond baseline mitigations 

provided by CPU microcode and scheduling strategies 

(e.g., page‐access pattern obfuscation). Denial-of-service 

and performance interference are out of scope. 

STATISTICAL ANALYSIS 

To evaluate the performance overhead of confidential 

execution, we conducted controlled benchmarks on a 

ResNet-50 training job over CIFAR-10. Experiments 

were run on m⁶i.2xlarge instances (8 vCPUs, 32 GiB 

RAM) with SGX-capable CPUs and AMD EPYC 2nd 

Gen for SEV tests. Each configuration executed one 

epoch of training with batch size 128, synchronized SGD, 

and standard data augmentation. Five trials were 

performed per configuration; we report mean ± standard 

deviation. 

Table 1. Performance and Memory Overhead for 

ResNet-50 Training under Different Execution 

Environments 
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Configuration Epoch 

Time 

(s) 

Overhead 

(%) 

Memory 

Footprint 

(GiB) 

Native (no 

TEE) 

120.3 – 8.1 

SGX / 

TensorSCONE 

150.6 +25.2 10.2 

AMD SEV 

(VM) 

141.4 +17.6 9.6 

 

Figure-3. Performance and Memory Overhead for ResNet-50 Training 

under Different Execution Environments 

Analysis: 

• Runtime Overhead: SGX enclaves introduce 

the highest overhead (~25%), attributable to 

enclave boundary crossings for syscalls and 

encrypted memory management. SEV’s VM-

level encryption adds ~17.6% overhead, 

reflecting lower syscall interception but bulk 

memory-encryption costs. 

• Memory Footprint: SGX’s secure heap 

demands ~2 GiB additional memory for enclave 

metadata and MEE paging structures. SEV’s 

footprint increases by ~1.5 GiB due to full VM 

encryption metadata. 

• Variability: Standard deviations remain under 

2% across configurations, indicating consistent 

performance and minimal interference in these 

dedicated testbeds. 

These results confirm that confidential execution 

overheads—while nontrivial—remain within practical 

bounds for many production workloads, especially when 

weighed against the security benefits of data/model 

confidentiality. 

SIMULATION RESEARCH 

To assess cluster-level behavior and scheduling strategies, 

we simulated a Kubernetes deployment replaying a 

scaled-down Google Borg trace [Verma et al., 2015] over 

100 AI training jobs with varying resource demands. Our 

10-node cluster comprised: 

• 5 SGX-capable m⁶i.large nodes (2 vCPUs, 8 

GiB, SGX enabled) 

• 5 standard m6i.large nodes (no enclave support) 

Job Mix: 

• 60% data-parallel training requiring at least one 

enclave node. 

• 40% standard batch inference or preprocessing 

tasks. 

Scheduler Policies: 

• Strict Enclave Assignment: Enclave-required 

jobs scheduled only on SGX nodes. 

• Flexible Fallback: Enclave jobs first try SGX 

nodes; if none available within 60 s, dispatch to 

120.3

150.6

141.4

0
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0 50 100 150 200

Native (no TEE)

SGX / TensorSCONE

AMD SEV (VM)

Configuration

Memory Footprint (GiB) Overhead (%)

Epoch Time (s)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/


  
 
 

31 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE) 

ISSN (Online): request pending 

Volume-2 Issue-1 || Jan- Mar 2026 || PP. 25-35 https://wjftcse.org/  

a provider-managed SEV cluster (modeled as 

elastic but with 20 s startup delay). 

Metrics: Average job wait time, cluster utilization, job 

completion latency. 

Policy Avg. 

Wait 

Time 

(s) 

SGX Node 

Utilization 

(%) 

Overall 

Utilization 

(%) 

Strict 

Enclave 

200 ± 

15 

95 ± 3 65 ± 4 

Flexible 

Fallback 

120 ± 

10 

75 ± 5 80 ± 3 

Findings: 

1. Strict Policy saturates SGX resources, leading 

to long queue times and underutilized standard 

nodes—undesirable for bursty workloads. 

2. Flexible Fallback reduces wait times by ~40% 

and boosts overall utilization by ~15%, at the 

cost of relying on external enclave capacity (e.g., 

SEV clusters) with moderate startup delays. 

3. Hybrid Scheduling that prioritizes local SGX 

but gracefully offloads to SEV or secondary 

providers can meet SLAs while balancing 

security and performance. 

These simulations demonstrate that orchestration 

strategies must account for enclave scarcity and job 

criticality. Enclave providers should offer elastic, on-

demand enclave pools to handle overflow, and schedulers 

should integrate enclave-awareness into placement 

decisions. 

RESULTS 

Our integrated evaluation of SecureAI yields several key 

insights: 

1. Security Guarantees 

o All sensitive operations—data 

decryption, model weight handling, 

gradient aggregation—occur 

exclusively within TEEs. 

o Remote attestation ensures only 

verified code measurements receive 

decryption keys, preventing 

unauthorized code from accessing data 

or parameters. 

o End-to-end encryption of inter-enclave 

communications thwarts man-in-the-

middle and hypervisor-level network 

attacks. 

2. Performance Trade-offs 

o Measured overheads of +17–25% 

(Table 1) align with prior work 

[Arnautov et al., 2016; Kunkel et al., 

2019], confirming that confidential 

execution is viable for production AI 

workloads. 

o Enclave crossing costs dominate SGX 

overhead; bulk encryption in SEV adds 

moderate costs but improves syscall 

performance. 

3. Scalability and Scheduling 

o Simulation research indicates that 

enclave node scarcity can become a 

bottleneck under strict scheduling, 

necessitating fallback to provider-

managed enclaves or mixed-platform 

deployments. 

o Flexible scheduling policies can reduce 

job waits by ~40% while maintaining 

>75% node utilization. 

4. Usability Considerations 

o Transparent secure I/O libraries 

minimize code changes for data 

ingestion and checkpointing. 
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o Framework adaptations require 

recompilation but preserve existing 

training scripts and APIs. 

o Key-management and attestation logic 

can be encapsulated within a control 

plane service, simplifying DevOps 

integration. 

Overall, SecureAI achieves strong confidentiality and 

integrity with acceptable performance overheads and 

practical orchestration strategies, making it suitable for 

security-sensitive AI deployments in public clouds. 

CONCLUSION 

This work has presented SecureAI, a comprehensive 

framework for executing AI pipelines securely on 

confidential cloud infrastructure. By leveraging hardware 

TEEs—Intel SGX for fine-grained enclaves and AMD 

SEV for VM-level encryption—SecureAI isolates critical 

pipeline stages within attested, encrypted environments, 

protecting sensitive data and proprietary models from 

malicious cloud stacks. We detailed the design of an 

enclave bootstrap service, secure data ingestion libraries, 

enclave-aware adaptations of TensorFlow and PyTorch, 

end-to-end encrypted parameter management for 

distributed training, and a protected inference service. 

Empirical benchmarks on CIFAR-10 training with 

ResNet-50 revealed that SGX enclaves introduce ~25% 

overhead, while AMD SEV VMs add ~17%, both within 

practical bounds for many applications. Cluster-scale 

simulations demonstrated that flexible scheduling—with 

fallback to provider-managed enclaves—can reduce wait 

times by ~40% and maintain high utilization, addressing 

enclave scarcity under burst workloads. 

Limitations include: 

• Enclave Memory Constraints: SGX EPC size 

limits the size of models and batch processing; 

large-scale models may require partitioning or 

streaming strategies. 

• Side-Channel Risks: Beyond baseline 

microcode mitigations, SecureAI does not 

address advanced side-channel attacks; future 

work should integrate noise injection, oblivious 

memory access, and compiler-based defenses. 

• Provider Reliance: Fallback strategies depend 

on cloud-provider enclave offerings with 

unpredictable startup latencies and potential 

vendor lock-in. 

By making our implementation, benchmark suite, and 

scheduling extensions open source, we aim to catalyze 

adoption of confidential computing in real-world AI 

systems, ensuring that the next generation of AI services 

can be both powerful and inherently secure. 
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