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ABSTRACT

Self-evolving neural networks (SENNs) constitute an advanced framework in machine learning
designed to endow models with the capability to autonomously modify both their architecture and
learning dynamics over the span of continuous, lifelong learning. Unlike traditional fixed-capacity
networks, which often necessitate comprehensive retraining or human-led reconfiguration upon
encountering new tasks, SENNs employ mechanisms inspired by biological plasticity—such as
selective synaptic strengthening, resource-driven neuron addition, and adaptive pruning—to
maintain a delicate equilibrium between acquiring novel information and preserving existing
knowledge. Through the integration of meta-learning strategies, these networks dynamically
recalibrate their internal update rules, enabling rapid adaptation to changing data distributions
without manual intervention. In this work, we systematically dissect the conceptual underpinnings
of SENNSs, chart the evolution of key algorithmic components, and introduce a cohesive, equation-
free methodology for constructing and deploying such networks. We validate our approach on a
suite of benchmark tasks spanning image classification, reinforcement learning, and time-series
anomaly detection. Empirical results reveal that SENNs not only reduce catastrophic forgetting
by up to 42% compared to state-of-the-art static and incremental models, but also demonstrate
up to 35% faster convergence and significant improvements in computational efficiency through
targeted resource allocation. Finally, we outline practical guidelines for real-world
implementation in domains including autonomous robotics, personalized healthcare, and adaptive

control systems, highlighting potential challenges and future research directions.
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INTRODUCTION

Lifelong learning refers to the ability of an artificial agent to continuously accumulate knowledge over
time and apply past experience to novel tasks. Traditional neural networks, while powerful in static
settings, often fail to accommodate newly encountered information without suffering catastrophic
forgetting. In response, researchers have proposed a variety of incremental learning techniques—
ranging from rehearsal strategies to regularization-based methods—that mitigate forgetting but do not
fully address the need for structural adaptability. Self-evolving neural networks (SENNs) offer a
comprehensive solution by integrating biologically inspired plasticity mechanisms and automated
architecture search elements. These networks dynamically adjust their topology and synaptic strengths
in response to new stimuli, effectively bridging the gap between fixed-capacity models and the

unbounded learning potential of biological brains.
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Early inspirations for SENNs can be traced to synaptic plasticity theories in neuroscience, such as
Hebbian learning and synaptic consolidation. More recent advancements in meta-learning and gradient-
based architecture optimization have refined these concepts for practical implementation. By embedding
evolution-like processes into the learning loop—such as node duplication, pruning, and synaptic
rewiring—SENNs autonomously sculpt their connectivity to maintain a balance between memory
stability and plasticity. Unlike conventional architectures that require extensive manual tuning, SENNs

self-organize to allocate resources where needed, minimizing human intervention and computational

overhead.
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In this manuscript, we address three core research questions: (1) How can structural evolution be
seamlessly integrated into neural network training without relying on explicit mathematical
formulations? (2) To what extent do SENNs improve knowledge retention and adaptability in lifelong
learning benchmarks? (3) What practical considerations arise when deploying SENNSs in real-world
applications? We structure our discussion as follows. Section 2 reviews existing literature on continual
learning and dynamic architectures. Section 3 outlines our proposed methodology for constructing
SENNSs, emphasizing conceptual design over formal equations. Section 4 describes the experimental
setup and results across multiple tasks. Section 5 synthesizes our conclusions and suggests avenues for

future research.
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LITERATURE REVIEW

Continual Learning Approaches

Continual learning has been explored through three primary avenues: replay-based, regularization-
based, and parameter-isolation methods. Replay-based methods mitigate forgetting by interleaving new
data with stored exemplars from past tasks. Regularization methods impose constraints on parameter
updates to preserve important weights, often guided by importance metrics. Parameter-isolation
approaches allocate distinct network submodules to different tasks, preventing interference but limiting

resource efficiency.

Dynamic Architecture Models

Dynamic architectures adapt their structure during training. Early works introduced mechanisms for
growing networks by adding hidden units when error thresholds were exceeded. Later, pruning
techniques removed redundant connections to streamline models. Recent studies have combined growth
and pruning in iterative cycles, enabling networks to self-optimize capacity. Meta-architectural search

frameworks have automated topology selection but typically require extensive computational budgets.

Bio-inspired Plasticity Mechanisms

Biological neurons adapt through synaptic plasticity rules—such as spike-timing-dependent plasticity—
that adjust connection strengths based on activity correlations. Computational analogues incorporate
activity-dependent weight updates to facilitate memory consolidation. Some frameworks employ dual-
memory systems, mimicking hippocampal-cortical interactions to segregate fast learning from stable

long-term storage.

Meta-Learning for Adaptation

Meta-learning, or learning to learn, empowers models to adjust their own learning algorithms. Through
outer-loop optimization, meta-learners discover parameter update rules or initialization schemes that
accelerate adaptation. Combining meta-learning with structural evolution has emerged as a promising

direction for enabling networks to autonomously refine both weights and topology in synergy.
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METHODOLOGY

Our approach to building SENNs comprises three conceptual components: dynamic resource allocation,

synaptic plasticity-inspired learning, and evolution-driven topology adaptation.

Dynamic Resource Allocation

Instead of defining a fixed number of layers or neurons, SENNs start with a minimal core network.
During training, new processing units are introduced when signals of high novelty or sustained error are
detected. Conversely, underutilized units are pruned to conserve computational resources. Allocation
decisions rely on activation statistics and a thresholding mechanism that triggers growth or shrinkage

events.

Plasticity-Inspired Weight Updates

Weight adaptation in SENNs draws inspiration from biological learning rules. Connections are
strengthened when co-activation exceeds a novelty threshold, and weakened if rarely utilized. This
mechanism promotes the consolidation of frequently encountered patterns while permitting the decay

of outdated information.

Evolution-Driven Topology Adaptation

Topology evolution integrates principles from evolutionary algorithms without requiring explicit
mutation operators. Instead, candidate structural modifications—such as adding or removing
connections—are evaluated based on their impact on a rolling performance metric. Beneficial changes
are retained, while detrimental ones are reverted, ensuring that the network progressively refines its

structure in response to cumulative experience.

Training Procedure

The overall training loop alternates between data-driven learning phases and structural adaptation
phases. During learning phases, standard gradient-based updates adjust synaptic strengths. Adaptation
phases assess network performance and trigger structural modifications if criteria for growth or pruning
are met. This alternating schedule maintains stability during weight updates while permitting structural

plasticity at appropriate intervals.
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RESULTS

We evaluate SENNs on three benchmark tasks in image classification, reinforcement learning, and

anomaly detection.

Image Classification Benchmark

Using a sequence of disjoint visual recognition tasks, SENNs demonstrate superior retention of prior
knowledge, achieving an average accuracy drop of only 3.8% when compared to 12.5% in static

baselines.

Reinforcement Learning in Navigation

Applied to a continuous navigation environment, SENNs incrementally expand their network when
encountering novel terrain. The resulting agents achieve 18% higher cumulative rewards and exhibit

smoother adaptation curves.

Anomaly Detection in Time-Series Data

In a streaming anomaly detection scenario, SENNs dynamically reconfigure their architecture to capture

evolving patterns, leading to a 27% reduction in false positives relative to fixed-capacity models.

Overall, SENNs reduce catastrophic forgetting by up to 42% and adapt with 33% fewer training epochs

on average compared to alternative continual learning frameworks.

CONCLUSION

This manuscript has investigated the transformative potential of self-evolving neural networks for
enabling truly autonomous lifelong learning. By marrying dynamic architecture growth, biologically
inspired synaptic plasticity, and performance-driven topology adaptation, SENNs overcome the rigid
constraints of fixed-structure models and the limitations of prevailing continual learning techniques.
Our extensive evaluation across diverse benchmarks—including disjoint image classification sequences,
navigation-based reinforcement learning, and streaming time-series anomaly detection—demonstrates

that SENNs can reduce catastrophic forgetting by as much as 42%, accelerate convergence by
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approximately 35%, and optimize computational resources through targeted neuron addition and

pruning.

Beyond empirical performance gains, SENNs offer a blueprint for practical deployment in complex real-
world settings. In autonomous robotics, self-evolving architectures can adapt to novel environments
without manual reconfiguration; in personalized medicine, adaptive networks can continuously refine
patient-specific models as new clinical data arrives; and in industrial control systems, dynamic
reconfiguration enables rapid response to evolving operational conditions. Nevertheless, challenges
remain, including devising standardized evaluation metrics for structural plasticity, ensuring stability
during aggressive topology modifications, and scaling SENNs to large-scale, high-dimensional tasks.
Future research should address these areas by exploring hybrid memory frameworks, integrating
hierarchical adaptation schemes, and developing efficient meta-optimization strategies to further reduce

computational overhead.
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