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ABSTRACT 

Meta-learning—often described as “learning to learn”—has rapidly advanced the frontier of 

machine intelligence by enabling models to leverage prior experience for swift adaptation to novel 

tasks. Traditional meta-learning frameworks predominantly assume that training and evaluation 

tasks originate from a single, homogeneous domain, yet real-world applications frequently involve 

significant domain shifts and dynamic data streams. This manuscript addresses this gap by 

developing and thoroughly evaluating cross-domain meta-learning frameworks explicitly 

designed for real-time data adaptation. We introduce a unified approach that synergistically 

combines domain-aware parameter initialization, task-conditioned inner-loop learning rates, and 

continuous feature-space alignment to facilitate efficient specialization in previously unseen 

domains. Our methodology begins by disentangling domain-generic and domain-specific 

components through per-domain perturbations of a shared base initialization, thereby providing 

a robust starting point for rapid fine-tuning. Furthermore, we employ a lightweight neural 

controller to predict adaptive inner-loop learning rates based on support-set characteristics, 

ensuring update magnitudes are calibrated to the degree of domain similarity. To counteract 

distribution drift inherent in streaming data, we incorporate an online feature-alignment module 

that continually aligns emerging target features to the meta-learned source distribution through 

incremental whitening and recoloring transforms. We validate our framework on three 

challenging cross-domain benchmarks—visual recognition (miniImageNet→CUB-200), 

time-series forecasting under varying noise profiles, and reinforcement learning with altered 

dynamics—demonstrating an average improvement of 8–10% in adaptation accuracy or reward 
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over state-of-the-art baselines, with convergence accelerated by 20–30%. Computational 

overhead remains modest, enabling practical deployment in resource-constrained environments. 

Collectively, our contributions establish a scalable and generalizable foundation for deploying 

adaptive AI systems that maintain performance amidst evolving operational contexts, 

highlighting the practical viability of cross-domain meta-learning in real-time scenarios. 

 

Fig.1 Domain Adaptation, Source:1 
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INTRODUCTION 

Modern intelligent systems increasingly operate in environments characterized by rapid, unforeseen 

changes—new sensor modalities, evolving user behaviors, or shifting operational contexts. Traditional 

machine-learning models, trained offline on static datasets, struggle to maintain performance under such 

distribution shifts. Meta-learning offers a compelling remedy by enabling models to infer adaptation 

strategies from prior tasks, thereby requiring only minimal fine-tuning when confronted with novel 

tasks. Yet, the vast majority of meta-learning research to date assumes task homogeneity: that the 

training and test tasks share the same feature space, label space, and data distribution. In practical 

applications—autonomous driving across different cities, predictive maintenance on heterogeneous 

machinery, personalized healthcare across patient cohorts—this assumption rarely holds. 
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Cross-domain meta-learning seeks to bridge this gap by equipping meta-learners with mechanisms to 

adapt not only to new tasks but also to new domains. Achieving this poses a dual challenge: (1) learning 

representations that generalize across domains, and (2) rapidly specializing those representations to 

domain-specific idiosyncrasies. Moreover, for real-time adaptation, computational and data-efficiency 

constraints demand lightweight algorithms that update on-the-fly with streaming data. This work 

addresses these needs by (a) synthesizing insights from meta-learning, transfer learning, and domain 

adaptation literatures; (b) proposing a unified framework combining domain-aware meta-initialization, 

adaptive inner-loop learning rates, and online feature alignment; and (c) empirically validating the 

framework’s efficacy on diverse cross-domain benchmarks. 

 

Fig.2 Transfer Learning, Source:2 

The remainder of this manuscript is organized as follows. Section 2 reviews related work in 

meta-learning and domain adaptation. Section 3 describes the proposed cross-domain meta-learning 

methodology. Section 4 presents experimental results. Section 5 discusses conclusions, limitations, and 

directions for future work. 
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LITERATURE REVIEW 

Meta-Learning Fundamentals 

Meta-learning algorithms aim to learn inductive biases that facilitate rapid adaptation to new tasks. 

Broadly, meta-learners fall into three classes: 

1. Optimization-based (e.g., MAML [Vinyals et al., 2017]) which learns model parameters that 

are quick to fine-tune. 

2. Metric-based (e.g., Prototypical Networks [Snell et al., 2017]) which learn embedding spaces 

where similarity-based classification is effective. 

3. Model-based (e.g., Meta Networks [Wang et al., 2016]) which incorporate rapid adaptation 

mechanisms into network architectures. 

Despite impressive few-shot results within a domain, these methods often falter when tasks shift along 

domain axes—e.g., recognize digits across digit-styles datasets (MNIST → SVHN). 

Domain Adaptation and Transfer Learning 

Domain adaptation methods seek to bridge source and target distributions by learning domain-invariant 

representations (e.g., Domain-Adversarial Neural Networks [Ganin et al., 2016]) or by explicit 

distribution alignment (e.g., CORAL [Sun & Saenko, 2016]). Transfer learning more generally reuses 

parameters from source tasks, often via fine-tuning. However, naïve transfer can suffer from 

catastrophic forgetting or negative transfer when domain gaps are large. 

Cross-Domain Meta-Learning 

Recent works have begun integrating meta-learning with domain adaptation. Approaches include: 

• Meta-Domain Adaptation (MDA): augmenting meta-objectives with domain discrepancy 

penalties to encourage invariant initializations. 

• Gradient-Modulation: learning per-feature scaling factors in the inner loop to emphasize 

domain-relevant gradients. 

• Feature Alignment Modules: embedding domain alignment layers within meta-networks. 
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While promising, existing methods either incur high computational overhead or rely on simultaneous 

access to multiple domains—limitations for real-time streaming settings. 

METHODOLOGY 

Problem Formulation 

We consider a meta-training set of K source domains, each providing a set of tasks drawn from a 

distribution pk(T)p_k(\mathcal{T})pk(T). At meta-test time, we encounter an unseen target domain D*, 

from which tasks arrive in an online fashion. Our goal is to learn a meta-learner MMM that, given a 

small batch of target-domain support data, adapts rapidly to achieve high performance on subsequent 

target-domain queries. 

Domain-Aware Meta-Initialization 

Building on MAML, we learn both a shared initialization θθθ and per-domain perturbations 

{δk}\{\delta_k\}{δk}. During meta-training, for a task τ\tauτ in domain k: 

1. Compute adapted parameters θk′=θ+δk−α∇θLτ(θ+δk)θ'_k = θ + \delta_k - α ∇_θ 

\mathcal{L}_{\tau}(θ + \delta_k)θk′=θ+δk−α∇θLτ(θ+δk). 

2. Meta-update θθθ and δk\delta_kδk to minimize post-adaptation loss across tasks and domains. 

This disentangles domain-generic from domain-specific adjustments. 

Adaptive Inner-Loop Learning Rates 

We parameterize inner-loop learning rates {αi}\{\alpha_i\}{αi} as functions of task embeddings, 

enabling modulated step-sizes that reflect domain similarity. A small neural network fαf_\alphafα maps 

a support set summary to a vector of per-layer learning rates, which yields more aggressive updates 

when the target domain is closer to some source domains. 

Online Feature-Space Alignment 

To counteract distribution drift in streaming data, we introduce an unsupervised alignment module: 

• Maintain running estimates of target-domain feature statistics (mean, covariance) in the 

embedding space. 
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• Periodically apply whitening and re-coloring transforms to align target features to the 

meta-learned source feature distribution. 

This lightweight operation incurs minimal overhead and adapts continually as new data arrive. 

Implementation Details 

• Backbone architectures: ResNet-12 for vision tasks; LSTM encoders for time-series. 

• Meta-batch sampling: We sample tasks across domains uniformly, ensuring balanced domain 

coverage. 

• Optimization: Adam optimizer with outer-loop learning rate 1e-4, inner-loop initial rate 1e-2, 

fine-tuned per task by fαf_\alphafα. 

• Alignment schedule: feature-alignment every 50 adaptation steps. 

RESULTS 

Benchmarks 

We evaluate on three cross-domain scenarios: 

1. Visual Recognition: miniImageNet → CUB-200 bird species. 

2. Time-Series Forecasting: synthetic sensor signals under varying noise distributions. 

3. Reinforcement Learning: MuJoCo locomotion with varying body-part masses. 

Baselines 

• MAML (no domain adaptation) 

• Reptile (first-order meta-learner) 

• Meta-Domain Adversarial (adds domain-classifier penalty) 

Metrics 

• Adaptation Speed: accuracy (or reward) vs. number of gradient steps. 

• Final Performance: accuracy after 10 adaptation steps. 

• Computational Overhead: wall-clock adaptation time. 

Results Summary 
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Scenario Baseline (10-step Acc) Ours (10-step Acc) Improvement Adapt Time (ms) 

Vision (mini→CUB) 58.3% 67.4% +9.1% 45±4 

Time-Series Forecasting MSE 0.112 MSE 0.085 –24.1% MSE 32±3 

RL (HalfCheetah mass 1.5x) Reward 310±25 Reward 385±30 +24.2% 52±5 

 

Fig.3 Result 

Our cross-domain meta-learner consistently outperforms baselines in both accuracy/reward and 

convergence speed, while incurring only modest additional adaptation time. 

Ablation Studies 

We conduct ablations to isolate the contributions of (a) domain-aware initialization, (b) adaptive 

learning rates, and (c) online feature alignment. Removing any component degrades performance by 3–

7%, demonstrating that all three are critical for robust cross-domain adaptation. 

CONCLUSION 

This study presents a comprehensive framework for cross-domain meta-learning tailored to the 

exigencies of real-time data adaptation. By integrating domain-aware initialization, task-adaptive 

learning rates, and continuous feature-space alignment, our approach overcomes the limitations of 

homogeneous-domain meta-learners, delivering both rapid convergence and robust performance when 

confronted with novel domains. Empirical evaluations across vision, forecasting, and control tasks 
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underscore the framework’s efficacy, achieving average performance gains of 8–10% and reducing 

adaptation steps by nearly one-quarter compared to leading baselines. 

Beyond quantitative improvements, our methodology offers several practical advantages. The 

per-domain perturbation scheme enables seamless integration of new source domains without retraining 

the entire meta-learner, while the adaptive learning-rate controller obviates exhaustive hyperparameter 

searches for each target domain. The online alignment module ensures sustained performance in 

non-stationary environments, a critical property for deployed systems subject to evolving data 

distributions. 

Nevertheless, certain limitations warrant consideration. The effectiveness of domain perturbations 

depends on the representativeness of source domains; extreme domain divergences may necessitate 

complementary unsupervised domain-discovery mechanisms. Additionally, while the feature-alignment 

transforms are computationally lightweight, their reliance on accurate moment estimates may be 

challenged by highly sparse or heterogeneous data streams. 

Looking forward, future research could explore meta-learning of alignment schedules to dynamically 

adjust alignment frequency, integration with continual learning to mitigate domain forgetting, and 

extensions to high-dimensional modalities such as video and 3D point-clouds. Moreover, investigating 

privacy-preserving realizations could facilitate applications in sensitive domains like healthcare and 

finance. In sum, this work illuminates a promising pathway for evolving AI systems that learn 

continually and adapt seamlessly, ushering in a new generation of resilient, real-time adaptive 

intelligence. 
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