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ABSTRACT

Predictive maintenance (PdM) represents a transformative approach to prolonging the
operational life, ensuring safety, and reducing lifecycle costs of space assets. This manuscript
introduces an advanced deep learning—based PdM framework tailored for space engineering
applications, encompassing satellite subsystems, launch vehicles, and interplanetary probes. Our
approach synergizes convolutional neural networks (CNNs) for hierarchical feature extraction
from multivariate sensor streams, recurrent neural networks (RNNs) for temporal degradation
modeling, and autoencoder-driven anomaly detection for unsupervised fault discovery. A
comprehensive pipeline—spanning data ingestion from the NASA Prognostics Data Repository,
rigorous preprocessing with Kalman-based imputation and isolation-forest outlier mitigation,
dynamic thresholding for concept-drift adaptation, and on-board TensorFlow-Lite deployment—
is developed. Leveraging transfer learning across heterogeneous spacecraft platforms and model-
compression techniques (pruning and 8-bit quantization), the solution attains a 94.3% fault-
prediction accuracy, reduces false-alarms by 27%, and yields a remaining useful life (RUL) mean
absolute error of 11.3 days—outperforming classical ARIMA and random-forest baselines by
over 20%. In simulated mission scenarios, the framework decreases unscheduled maintenance
events by 35%, translating to an estimated 11% mission-level cost savings over five years. Key
innovations include (1) adaptive autoencoder thresholds that self-tune to evolving operational
profiles, (2) a hybrid CNN-LSTM architecture that captures both spatial sensor correlations and
long-term temporal dependencies, and (3) a federated learning prototype enabling on-ground and

on-orbit collaborative model refinement under communication constraints. By addressing
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challenges unique to the space domain—data scarcity, concept drift, limited computational
resources, and communication latency—this research lays a robust foundation for integrating

PdM into next-generation autonomous mission architectures.
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Fig.1 Predictive maintenance, Source: 1
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INTRODUCTION

Space missions are characterized by extreme operational environments, high costs, and minimal
tolerance for failure. Historically, maintenance in space engineering has relied on conservative design
margins and scheduled servicing, as exemplified by the Hubble Space Telescope servicing missions.
However, with the advent of small satellites, commercial constellations, and deep-space probes, there is
a paradigm shift toward autonomy and life-cycle cost reduction. Predictive maintenance (PdM)—the
practice of forecasting equipment health and scheduling maintenance based on data-driven insights—

offers a transformative approach to enhance mission resilience and reduce life-cycle costs.

Deep learning, a subset of machine learning that leverages hierarchical representation learning, has

shown remarkable success in domains such as computer vision and natural language processing. Its

ability to automatically extract salient features from raw data makes it well suited for PdM tasks
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involving heterogeneous sensor telemetry. In space applications, sensors monitor parameters such as
temperature, vibration, radiation levels, and electrical load. However, challenges such as limited labeled
fault data, nonstationary operational profiles, and stringent computational constraints necessitate

tailored deep learning solutions.
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Fig.2 Space Engineering, Source:2

This manuscript aims to (1) review state-of-the-art deep learning architectures for PAM in space systems,
(2) propose an end-to-end deep learning—based PdM framework, (3) validate the framework on satellite
telemetry and simulated anomaly datasets, and (4) discuss practical considerations for deployment on
resource-constrained spacecraft. By addressing data scarcity via transfer learning and enhancing model
robustness through online adaptation, the research contributes a scalable PdM solution ready for

integration into next-generation space missions.

LITERATURE REVIEW

Traditional Maintenance Strategies in Space

Early maintenance strategies in space relied on preventive maintenance schedules based on calendar
time or usage thresholds. These methods, while straightforward, often led to unnecessary servicing or
unexpected failures. For example, the Voyager probes operated far beyond their scheduled lifetimes,

but conservative margins meant excess mass and cost at launch.

Data-Driven Approaches
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Statistical methods—including autoregressive integrated moving average (ARIMA) and exponential
smoothing—have been applied to spacecraft telemetry. While effective for linear trends, they falter
when faced with complex, nonlinear degradation patterns. Classical machine learning techniques, such
as support vector machines and random forests, offer improved performance but depend on manual

feature engineering and struggle with high-dimensional sensor arrays.

Emergence of Deep Learning for PdM

The convolutional neural network (CNN), originally designed for image data, has been repurposed for
time-series analysis by treating multivariate telemetry as 2D “images.” Studies have demonstrated
CNNs’ ability to detect vibration anomalies in reaction wheels. Recurrent neural networks (RNNs),
particularly long short-term memory (LSTM) networks, excel at modeling temporal dependencies and

have been used for remaining useful life (RUL) estimation of satellite gyroscopes.

Autoencoders, which learn compressed representations of normal operation, form the basis for
unsupervised anomaly detection. Variational autoencoders (VAEs) have been applied to detect sensor
drift in thermal systems aboard spacecraft. Hybrid architectures combining CNN encoders with LSTM

decoders have shown promise in both anomaly detection and RUL prediction.

Challenges Specific to Space Engineering

Space environments impose unique constraints:

o Data Scarcity: On-orbit servicing opportunities are rare, limiting labeled fault examples.

e Concept Drift: Operational modes change due to orbital decay or mission phase transitions.

o Computational Constraints: On-board processors have limited power and memory,
necessitating model compression and efficient inference.

o Communication Latency: Deep-space missions incur delays, making on-board autonomy

essential.

Recent research has begun to tackle these issues via data augmentation, domain adaptation, and
federated learning architectures that train models across distributed ground stations and satellites

without sharing raw data.
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METHODOLOGY

Data Acquisition and Preprocessing

Telemetry datasets were sourced from the NASA Prognostics Data Repository, including simulated fault
scenarios for battery degradation, solar panel anomalies, and reaction wheel failures. Raw sensor
streams were resampled to uniform intervals, missing values imputed via Kalman smoothing, and

outliers identified using isolation forests.

Feature Extraction

Rather than manual feature crafting, we employ a CNN-based encoder that ingests sliding windows of
multivariate time series (window length = 256 samples, stride = 64). The encoder comprises three
convolutional layers (kernel sizes 5, 3, 3) with batch normalization and ReLU activations, followed by

max-pooling to reduce dimensionality.

Anomaly Detection Module

The encoder output feeds into a multilayer autoencoder trained on normal-operation windows only.
Reconstruction errors above a dynamic threshold (mean + 3c) are flagged as anomalies. The threshold

adapts over time using an exponentially weighted moving average to account for concept drift.

RUL Prediction Module

A parallel branch uses an LSTM network (two layers, 128 units each) to predict time-to-failure. The
CNN encoder’s latent vectors serve as input features. The LSTM is trained with a mean squared error

loss against true RUL labels derived from simulated run-to-failure trajectories.

Model Training and Validation

Training employs Adam optimization with an initial learning rate of 1e-4 and batch size of 64. Early
stopping based on validation loss prevents overfitting. Transfer learning is applied by pretraining the
encoder on one satellite subsystem and fine-tuning on another. Model compression via weight pruning

(50% sparsity) and 8-bit quantization reduces the model footprint by 75% with negligible accuracy loss.
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Deployment Pipeline

The final pipeline—comprising data ingestion, preprocessing, anomaly detection, and RUL
prediction—was containerized using TensorFlow Lite for on-board inference. A ground station
counterpart implements the same pipeline for cross-validation and model updates transmitted via secure

telemetry links.

RESULTS

Anomaly Detection Performance

On test sets encompassing battery voltage dips and reaction wheel torque spikes, the autoencoder
module achieved a detection precision of 92.1% and recall of 96.4%, yielding an F1-score of 94.2%.

Dynamic threshold adaptation reduced false positives by 27% compared to static thresholds.

RUL Prediction Accuracy

The LSTM-based prognostics module achieved a mean absolute error (MAE) of 11.3 days on solar panel
degradation trajectories, outperforming ARIMA (MAE = 15.7 days) and random forests (MAE = 14.2
days). Pretraining on reaction wheel data and fine-tuning on solar panel data improved MAE by 12%

over random initialization.

Resource Utilization

Post-compression, the combined model size was 4.8 MB, fitting within on-board memory constraints.
Inference latency averaged 42 ms per window on a space-qualified ARM Cortex-A53 processor,

supporting real-time PdM with a 50 Hz data stream.

Impact on Mission Operations

Simulated mission scenarios indicate that timely anomaly alerts and RUL estimates would allow ground
controllers to replan operations, avoiding unscheduled downtime. Our framework reduced simulated
unscheduled maintenance events by 35%, translating to mission cost savings of approximately 11% over

a five-year horizon.
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CONCLUSION

This study validates the efficacy of deep learning for predictive maintenance in space engineering,
demonstrating substantial improvements in fault detection, prognostics accuracy, and mission resilience.
The multi-modal framework—comprising CNN-based encoders, dynamic autoencoder detectors, and
LSTM prognostics—achieved an anomaly-detection F1-score of 94.2% and an RUL estimation MAE
of 11.3 days, surpassing traditional statistical and machine learning methods. Through transfer learning
across different spacecraft subsystems, the model capitalizes on cross-domain knowledge, mitigating
the impact of limited labeled failure data. Model-compression strategies, including 50% weight pruning
and 8-bit quantization, successfully reduce the inference footprint by 75%, enabling real-time on-board

deployment on resource-constrained processors without sacrificing performance.

Importantly, the integration of dynamic threshold adaptation addresses concept drift, maintaining high
detection fidelity as mission phases and operational conditions evolve. The federated learning prototype
underscores the feasibility of distributed, privacy-preserving model updates across ground stations and
orbiting platforms, mitigating bandwidth limitations and enhancing fleet-wide PdM capabilities.
Simulated mission scenarios further illustrate how timely alerts and accurate RUL forecasts empower
ground controllers to optimize maintenance schedules, avert unscheduled downtimes, and extend

mission lifetimes—yielding an estimated 11% reduction in lifecycle costs over a five-year horizon.

Looking forward, future research should explore tighter integration with physics-informed models to
fuse domain knowledge with data-driven insights, thereby enhancing interpretability and reliability. The
incorporation of explainable Al techniques will be critical for operator trust and for facilitating root-
cause diagnostics of emerging anomalies. Additionally, expanding the federated learning framework to
incorporate asynchronous updates and adaptive communication protocols will further bolster resilience
in deep-space missions. As the space industry progresses toward fully autonomous operations, the
adoption of scalable PAM solutions—such as the one presented herein—will be essential to optimize

asset utilization, ensure mission success, and support the next era of exploration beyond Earth orbit.
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