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ABSTRACT 

Predictive maintenance (PdM) represents a transformative approach to prolonging the 

operational life, ensuring safety, and reducing lifecycle costs of space assets. This manuscript 

introduces an advanced deep learning–based PdM framework tailored for space engineering 

applications, encompassing satellite subsystems, launch vehicles, and interplanetary probes. Our 

approach synergizes convolutional neural networks (CNNs) for hierarchical feature extraction 

from multivariate sensor streams, recurrent neural networks (RNNs) for temporal degradation 

modeling, and autoencoder‐driven anomaly detection for unsupervised fault discovery. A 

comprehensive pipeline—spanning data ingestion from the NASA Prognostics Data Repository, 

rigorous preprocessing with Kalman‐based imputation and isolation‐forest outlier mitigation, 

dynamic thresholding for concept‐drift adaptation, and on‐board TensorFlow‐Lite deployment—

is developed. Leveraging transfer learning across heterogeneous spacecraft platforms and model‐

compression techniques (pruning and 8‑bit quantization), the solution attains a 94.3% fault‐

prediction accuracy, reduces false‐alarms by 27%, and yields a remaining useful life (RUL) mean 

absolute error of 11.3 days—outperforming classical ARIMA and random‐forest baselines by 

over 20%. In simulated mission scenarios, the framework decreases unscheduled maintenance 

events by 35%, translating to an estimated 11% mission‐level cost savings over five years. Key 

innovations include (1) adaptive autoencoder thresholds that self‐tune to evolving operational 

profiles, (2) a hybrid CNN‐LSTM architecture that captures both spatial sensor correlations and 

long‐term temporal dependencies, and (3) a federated learning prototype enabling on‐ground and 

on‐orbit collaborative model refinement under communication constraints. By addressing 
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challenges unique to the space domain—data scarcity, concept drift, limited computational 

resources, and communication latency—this research lays a robust foundation for integrating 

PdM into next‐generation autonomous mission architectures. 

 

Fig.1 Predictive maintenance, Source:1 
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INTRODUCTION 

Space missions are characterized by extreme operational environments, high costs, and minimal 

tolerance for failure. Historically, maintenance in space engineering has relied on conservative design 

margins and scheduled servicing, as exemplified by the Hubble Space Telescope servicing missions. 

However, with the advent of small satellites, commercial constellations, and deep-space probes, there is 

a paradigm shift toward autonomy and life-cycle cost reduction. Predictive maintenance (PdM)—the 

practice of forecasting equipment health and scheduling maintenance based on data-driven insights—

offers a transformative approach to enhance mission resilience and reduce life-cycle costs. 

Deep learning, a subset of machine learning that leverages hierarchical representation learning, has 

shown remarkable success in domains such as computer vision and natural language processing. Its 

ability to automatically extract salient features from raw data makes it well suited for PdM tasks 
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involving heterogeneous sensor telemetry. In space applications, sensors monitor parameters such as 

temperature, vibration, radiation levels, and electrical load. However, challenges such as limited labeled 

fault data, nonstationary operational profiles, and stringent computational constraints necessitate 

tailored deep learning solutions. 

 

Fig.2 Space Engineering, Source:2 

This manuscript aims to (1) review state-of-the-art deep learning architectures for PdM in space systems, 

(2) propose an end-to-end deep learning–based PdM framework, (3) validate the framework on satellite 

telemetry and simulated anomaly datasets, and (4) discuss practical considerations for deployment on 

resource-constrained spacecraft. By addressing data scarcity via transfer learning and enhancing model 

robustness through online adaptation, the research contributes a scalable PdM solution ready for 

integration into next-generation space missions. 

LITERATURE REVIEW 

Traditional Maintenance Strategies in Space 

Early maintenance strategies in space relied on preventive maintenance schedules based on calendar 

time or usage thresholds. These methods, while straightforward, often led to unnecessary servicing or 

unexpected failures. For example, the Voyager probes operated far beyond their scheduled lifetimes, 

but conservative margins meant excess mass and cost at launch. 

Data-Driven Approaches 
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Statistical methods—including autoregressive integrated moving average (ARIMA) and exponential 

smoothing—have been applied to spacecraft telemetry. While effective for linear trends, they falter 

when faced with complex, nonlinear degradation patterns. Classical machine learning techniques, such 

as support vector machines and random forests, offer improved performance but depend on manual 

feature engineering and struggle with high-dimensional sensor arrays. 

Emergence of Deep Learning for PdM 

The convolutional neural network (CNN), originally designed for image data, has been repurposed for 

time-series analysis by treating multivariate telemetry as 2D “images.” Studies have demonstrated 

CNNs’ ability to detect vibration anomalies in reaction wheels. Recurrent neural networks (RNNs), 

particularly long short-term memory (LSTM) networks, excel at modeling temporal dependencies and 

have been used for remaining useful life (RUL) estimation of satellite gyroscopes. 

Autoencoders, which learn compressed representations of normal operation, form the basis for 

unsupervised anomaly detection. Variational autoencoders (VAEs) have been applied to detect sensor 

drift in thermal systems aboard spacecraft. Hybrid architectures combining CNN encoders with LSTM 

decoders have shown promise in both anomaly detection and RUL prediction. 

Challenges Specific to Space Engineering 

Space environments impose unique constraints: 

• Data Scarcity: On-orbit servicing opportunities are rare, limiting labeled fault examples. 

• Concept Drift: Operational modes change due to orbital decay or mission phase transitions. 

• Computational Constraints: On-board processors have limited power and memory, 

necessitating model compression and efficient inference. 

• Communication Latency: Deep-space missions incur delays, making on-board autonomy 

essential. 

Recent research has begun to tackle these issues via data augmentation, domain adaptation, and 

federated learning architectures that train models across distributed ground stations and satellites 

without sharing raw data. 
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METHODOLOGY 

Data Acquisition and Preprocessing 

Telemetry datasets were sourced from the NASA Prognostics Data Repository, including simulated fault 

scenarios for battery degradation, solar panel anomalies, and reaction wheel failures. Raw sensor 

streams were resampled to uniform intervals, missing values imputed via Kalman smoothing, and 

outliers identified using isolation forests. 

Feature Extraction 

Rather than manual feature crafting, we employ a CNN-based encoder that ingests sliding windows of 

multivariate time series (window length = 256 samples, stride = 64). The encoder comprises three 

convolutional layers (kernel sizes 5, 3, 3) with batch normalization and ReLU activations, followed by 

max-pooling to reduce dimensionality. 

Anomaly Detection Module 

The encoder output feeds into a multilayer autoencoder trained on normal-operation windows only. 

Reconstruction errors above a dynamic threshold (mean + 3σ) are flagged as anomalies. The threshold 

adapts over time using an exponentially weighted moving average to account for concept drift. 

RUL Prediction Module 

A parallel branch uses an LSTM network (two layers, 128 units each) to predict time-to-failure. The 

CNN encoder’s latent vectors serve as input features. The LSTM is trained with a mean squared error 

loss against true RUL labels derived from simulated run-to-failure trajectories. 

Model Training and Validation 

Training employs Adam optimization with an initial learning rate of 1e-4 and batch size of 64. Early 

stopping based on validation loss prevents overfitting. Transfer learning is applied by pretraining the 

encoder on one satellite subsystem and fine-tuning on another. Model compression via weight pruning 

(50% sparsity) and 8-bit quantization reduces the model footprint by 75% with negligible accuracy loss. 
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Deployment Pipeline 

The final pipeline—comprising data ingestion, preprocessing, anomaly detection, and RUL 

prediction—was containerized using TensorFlow Lite for on-board inference. A ground station 

counterpart implements the same pipeline for cross-validation and model updates transmitted via secure 

telemetry links. 

RESULTS 

Anomaly Detection Performance 

On test sets encompassing battery voltage dips and reaction wheel torque spikes, the autoencoder 

module achieved a detection precision of 92.1% and recall of 96.4%, yielding an F1-score of 94.2%. 

Dynamic threshold adaptation reduced false positives by 27% compared to static thresholds. 

RUL Prediction Accuracy 

The LSTM-based prognostics module achieved a mean absolute error (MAE) of 11.3 days on solar panel 

degradation trajectories, outperforming ARIMA (MAE = 15.7 days) and random forests (MAE = 14.2 

days). Pretraining on reaction wheel data and fine-tuning on solar panel data improved MAE by 12% 

over random initialization. 

Resource Utilization 

Post-compression, the combined model size was 4.8 MB, fitting within on-board memory constraints. 

Inference latency averaged 42 ms per window on a space-qualified ARM Cortex-A53 processor, 

supporting real-time PdM with a 50 Hz data stream. 

Impact on Mission Operations 

Simulated mission scenarios indicate that timely anomaly alerts and RUL estimates would allow ground 

controllers to replan operations, avoiding unscheduled downtime. Our framework reduced simulated 

unscheduled maintenance events by 35%, translating to mission cost savings of approximately 11% over 

a five-year horizon. 
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CONCLUSION 

This study validates the efficacy of deep learning for predictive maintenance in space engineering, 

demonstrating substantial improvements in fault detection, prognostics accuracy, and mission resilience. 

The multi‐modal framework—comprising CNN‐based encoders, dynamic autoencoder detectors, and 

LSTM prognostics—achieved an anomaly‐detection F1-score of 94.2% and an RUL estimation MAE 

of 11.3 days, surpassing traditional statistical and machine learning methods. Through transfer learning 

across different spacecraft subsystems, the model capitalizes on cross‐domain knowledge, mitigating 

the impact of limited labeled failure data. Model‐compression strategies, including 50% weight pruning 

and 8-bit quantization, successfully reduce the inference footprint by 75%, enabling real‐time on‐board 

deployment on resource‐constrained processors without sacrificing performance. 

Importantly, the integration of dynamic threshold adaptation addresses concept drift, maintaining high 

detection fidelity as mission phases and operational conditions evolve. The federated learning prototype 

underscores the feasibility of distributed, privacy‐preserving model updates across ground stations and 

orbiting platforms, mitigating bandwidth limitations and enhancing fleet‐wide PdM capabilities. 

Simulated mission scenarios further illustrate how timely alerts and accurate RUL forecasts empower 

ground controllers to optimize maintenance schedules, avert unscheduled downtimes, and extend 

mission lifetimes—yielding an estimated 11% reduction in lifecycle costs over a five‐year horizon. 

Looking forward, future research should explore tighter integration with physics‐informed models to 

fuse domain knowledge with data‐driven insights, thereby enhancing interpretability and reliability. The 

incorporation of explainable AI techniques will be critical for operator trust and for facilitating root‐

cause diagnostics of emerging anomalies. Additionally, expanding the federated learning framework to 

incorporate asynchronous updates and adaptive communication protocols will further bolster resilience 

in deep‐space missions. As the space industry progresses toward fully autonomous operations, the 

adoption of scalable PdM solutions—such as the one presented herein—will be essential to optimize 

asset utilization, ensure mission success, and support the next era of exploration beyond Earth orbit. 
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