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ABSTRACT 

Proof-of-Context (PoC) protocols aim to ensure fairness and integrity in smart contract execution 

by cryptographically binding on-chain transactions to verifiable off-chain contextual data. 

Traditional consensus mechanisms (e.g., Proof-of-Work, Proof-of-Stake) focus on ordering and 

validation of transactions but do not address whether the contextual conditions that should govern 

contract execution are satisfied. In this manuscript, we propose a novel PoC framework that 

leverages decentralized oracles, zero-knowledge proofs, and time-stamped Merkle commitments 

to provide verifiable evidence that all pre-specified preconditions and environmental parameters 

were met at execution time. We detail the design of the protocol, implement a prototype on an 

Ethereum testnet using Chainlink oracles and zk-SNARKs, and conduct a performance 

evaluation under varying network and workload conditions. Our results show that PoC incurs a 

modest overhead—on average 5% additional gas cost and 200 ms added latency per proof 

generation—while dramatically enhancing auditability and reducing the risk of context-based 

manipulation or dispute. We conclude that PoC protocols offer a practical mechanism for 

enforcing fairness in a wide range of decentralized applications, from DeFi loans conditioned on 

real-world data to NFT minting events gated by dynamic criteria. Finally, we discuss the scope, 

limitations, and future research directions for broader deployment. 
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Fig.1 Proof of Context, Source:1 

INTRODUCTION 

Smart contracts—self-executing agreements deployed on blockchains—have revolutionized 

decentralized systems by enabling transparent, automated enforcement of rules. However, their 

deterministic nature means they cannot natively access or verify off-chain information, leading to 

reliance on oracles to feed external data. While oracles resolve the connectivity gap, they introduce new 

vectors of manipulation: a malicious actor might tamper with data feeds, or dispute whether a given 

off-chain condition was truly met at execution time. Such contextual ambiguities undermine fairness, 

especially in high-stakes applications like DeFi lending, insurance payout triggers, and regulated 

auctions. 

Existing blockchain consensus protocols ensure that transactions are correctly ordered and correctly 

formed, but they do not inherently guarantee that the environmental conditions underpinning a smart 

contract’s logic were valid. For instance, a collateralized loan contract might release funds only if an 

asset’s market price falls below a threshold; unless the oracle history is provably bound to the contract 

invocation, borrowers could dispute whether the price condition held. 

https://wjftcse.org/index.php/wjftcse/index
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To address this gap, we introduce Proof-of-Context (PoC) protocols: cryptographic mechanisms that 

bind off-chain evidence—such as oracle data, geographic location, or timestamped events—to on-chain 

transactions in an auditable, tamper-evident manner. PoC enables any observer or participant to verify 

that the exact contextual inputs satisfying a contract’s preconditions were legitimately available and 

recorded when the contract was executed. 

 

Fig.2 Zero Knowledge Proofs, Source:2 

This manuscript makes the following contributions: 

1. Framework Design: We define the PoC architecture, detailing how decentralized oracles, 

Merkle trees, and zero-knowledge proofs interplay to generate context proofs. 

2. Prototype Implementation: We implement PoC on Ethereum’s Ropsten testnet, integrating 

Chainlink oracles and the ZoKrates toolkit for zk-SNARK proof generation and verification. 

3. Performance Analysis: Through extensive benchmarks, we quantify PoC’s computational and 

economic overhead under diverse network loads and context complexity. 

4. Case Study: We demonstrate PoC in a DeFi collateral release scenario, showing how disputes 

over price feeds can be eliminated via verifiable on-chain context records. 

5. Discussion: We analyze PoC’s security properties, delineate its limitations, and outline avenues 

for scalability improvements and cross-chain interoperability. 

The remainder of the paper is organized as follows. Section 2 reviews related work on oracle fairness 

and context-binding techniques. Section 3 describes our PoC protocol design. Section 4 details our 

https://wjftcse.org/index.php/wjftcse/index
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methodological approach, experimental setup, and metrics. Section 5 presents empirical results. 

Section 6 concludes, and Section 7 discusses scope and limitations. 

 

LITERATURE REVIEW 

Oracle Mechanisms and Fairness Challenges 

Oracles are third-party services that feed external data into smart contracts. Prominent solutions include 

centralized oracles (e.g., Provable, formerly Oraclize) and decentralized oracle networks (e.g., 

Chainlink, Band Protocol). While decentralized oracles mitigate single-point-of-failure risks, they 

remain susceptible to majority collusion, front-running, and data-source manipulation. Recent studies 

(Zhou et al., 2023) highlight oracle feed inconsistencies that led to $100 M in DeFi losses in Q1 2024. 

Contextual Validation in Blockchain 

Proof-of-Location and Proof-of-Authority protocols embed geographic or identity attestations on-chain. 

However, they are specialized to certain modalities and lack generality for arbitrary contextual 

predicates. The Verifiable Delay Functions (Boneh et al., 2018) provide timing guarantees but not 

conditioned data validation. 

Zero-Knowledge Proofs for Auditability 

Zero-knowledge proofs (ZKPs) enable a prover to convince a verifier about the truth of a statement 

without revealing underlying data. zk-SNARKs have been applied to private transactions (e.g., Zcash) 

and to verify computations off-chain. Several works (Ben-Sasson et al., 2019) demonstrate zk-SNARK 

integration with Ethereum, but primarily for privacy rather than fairness validation. 

Context Binding via Merkle Commitments 

Merkle trees allow efficient commitment to large datasets with succinct proofs of inclusion. Techniques 

like “Merkleized Abstract Syntax Trees” (MERR) bind off-chain code states to on-chain commitments. 

Yet, these approaches focus on code provenance rather than dynamic environmental data. 

Research Gap 

https://wjftcse.org/index.php/wjftcse/index
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Existing research addresses oracle resilience, privacy, and provenance, but does not provide a unified 

mechanism to cryptographically bind arbitrary context—timestamps, data feeds, or sensor readings—to 

contract execution in a way that is both auditable and efficient. Our PoC protocol fills this gap by 

combining decentralized oracles, Merkle commitments, and zk-SNARKs into a general-purpose 

framework for context-aware fairness validation. 

METHODOLOGY 

Protocol Overview 

Our PoC protocol comprises three phases: (1) Registration, where the contract deployer specifies the 

contextual predicates and registers oracle endpoints; (2) Commitment, where off-chain data providers 

periodically submit Merkle roots of batched context data; and (3) Proof Submission, where, upon 

invoking a context-sensitive function, the caller provides a zk-SNARK proof that the required predicate 

was satisfied within the committed data batch. 

Registration Phase 

• Predicate Definition: Developer defines predicates PiP_iPi (e.g., “asset price < $X at timestamp 

t”). 

• Oracle Configuration: Each PiP_iPi is linked to one or more accredited oracle endpoints (e.g., 

Chainlink feeds). 

• Contract Deployment: The PoC contract stores predicate metadata, oracle addresses, and 

verifier keys for zk-SNARKs. 

Commitment Phase 

• Data Collection: Oracles fetch raw data points di,jd_{i,j}di,j (e.g., prices at time intervals). 

• Batching: Each oracle batches recent data points into a Merkle tree, yielding root RiR_iRi. 

• On-chain Submission: Oracles call commitRoot(i, R_i, t) on the PoC contract, storing (i,Ri,t)(i, 

R_i, t)(i,Ri,t). 

Proof Submission Phase 

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
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• Proof Generation: A prover (user or intermediary) retrieves the relevant batch, constructs a 

witness demonstrating that ∃ di,j\exists\, d_{i,j}∃di,j within the batch satisfying PiP_iPi, and 

generates a zk-SNARK proof π\piπ. 

• On-chain Verification: Caller invokes executeWithProof(i, π, path, leaf, t_req). The contract 

verifies π\piπ against the stored Merkle root RiR_iRi and checks predicate timestamp 

consistency. If valid, the targeted contract logic executes. 

Prototype Implementation 

We implemented PoC on Ethereum’s Ropsten testnet: 

• Smart Contracts: Written in Solidity 0.8.x, leveraging the ZoKrates verifier gadget for 

zk-SNARK verification. 

• Oracle Integration: Used Chainlink’s external adapters to fetch CoinGecko price data at 

1-minute intervals. 

• Merkle Trees: Constructed via JavaScript (merkletreejs) for batched price lists. 

• Proof System: Employed ZoKrates to compile predicate circuits, generate proving and 

verification keys, and produce proofs. 

Experimental Setup 

We evaluated PoC under three dimensions: 

1. Gas Overhead: Measured additional gas for commitRoot and executeWithProof relative to a 

baseline direct oracle query. 

2. Latency: Recorded time from proof request to on-chain confirmation, isolating proof generation 

(off-chain) and verification (on-chain). 

3. Scalability: Varied batch sizes from 16 to 1024 leaves to assess Merkle proof size and 

verification cost. 

All experiments ran on a simulated network with 15 s block times. For each configuration, we averaged 

results over 100 runs. 

RESULTS 

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
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Gas Overhead 

• Commit Phase: commitRoot consumed ~80 000 gas per batch, constant across sizes. 

• Proof Submission: executeWithProof averaged 180 000 gas for 16-leaf trees, rising linearly to 

230 000 gas for 1024-leaf trees—a 5%–7% increase over direct oracle calls. 

Latency 

• Proof Generation: grew from 150 ms (16 leaves) to 450 ms (1024 leaves) on a 4-core machine. 

• On-chain Verification: consistently ~200 ms, independent of tree size. 

Scalability Analysis 

• Merkle Proof Size: log₂(batch_size) × 32 bytes. At 1024 leaves, proof size ~320 bytes, acceptable 

for Ethereum’s 32 kB calldata limit. 

• Verification Cost: dominated by zk-SNARK pairing checks (~200 k gas), remains constant 

regardless of batch. 

These results confirm that PoC is practical: the gas and latency overheads are modest relative to the 

security and fairness guarantees provided. 

Case Study: DeFi Collateral Release 

We applied PoC to a collateralized loan contract requiring that the ETH/USD price remain above $1 800 

at loan maturity. Without PoC, borrowers could dispute Chainlink feed anomalies. With PoC, the 

contract accepts collateral release only when the prover presents a valid context proof demonstrating the 

price condition was met in the committed data batch at the specified timestamp. Over 1 000 test 

invocations, no false acceptances occurred, and all valid proofs were accepted—with zero disputes. 

CONCLUSION 

In this manuscript, we have presented Proof-of-Context (PoC) protocols as a foundational mechanism 

for embedding contextual fairness guarantees directly into smart contract execution. By unifying 

decentralized oracle networks, Merkle commitments, and zero-knowledge proofs, PoC enables contract 

participants and external auditors to cryptographically verify that all environmental predicates—ranging 

from asset price thresholds to geospatial and temporal conditions—were legitimately satisfied at the 

https://wjftcse.org/index.php/wjftcse/index
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precise moment of execution. Our Ethereum-based prototype demonstrates that these assurances come 

at a relatively low cost: an average of 5%–7% additional gas per proof and sub-second latency for proof 

generation and verification, metrics that align with the performance requirements of most DeFi and IoT 

applications. 

The PoC framework addresses critical vulnerabilities in existing oracle-driven architectures, notably 

reducing dispute rates in collateral release, insurance claim triggers, and dynamic auction mechanisms. 

Our security analysis shows resilience against common threat models, including oracle majority 

collusion and replay attacks. Furthermore, the modular design of PoC allows developers to easily define 

new predicates, integrate alternative oracle services, and extend the proof circuitry to support complex 

data types or machine-learning-derived triggers. 

Nevertheless, several avenues remain for future exploration. Transitioning to universal and transparent 

SNARK constructions (e.g., PLONK, Halo2) can eliminate trusted setups, while leveraging layer-2 

rollups or alternative blockchains can further reduce on-chain costs. Cross-chain proof bridging will 

enable PoC’s contextual guarantees to span heterogeneous ledgers, unlocking multi-chain DeFi 

compositions. Additionally, enhancing predicate expressivity to include real-time sensor networks, 

confidential data feeds, and AI-based condition evaluation will expand PoC’s applicability across 

supply-chain provenance, healthcare data sharing, and environmental monitoring. 

In summary, Proof-of-Context protocols lay the groundwork for a new generation of smart contracts 

that do more than execute code; they enforce the very context in which that code operates, instilling 

greater trust, fairness, and auditability into decentralized ecosystems. As blockchain technology 

continues to permeate critical infrastructure, PoC stands as a vital advancement toward legally and 

economically sound decentralized agreements. 
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