World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wiftcse.org/

Proof-of-Context Protocols for Smart Contract Fairness

Validation

DOI: https://doi.org/10.63345/wijftcse.v1.i4.208

Siddharth Verma
Independent Researcher
Lucknow, India (IN) — 226001

www.wiftcse.org || Vol. 1 No. 4 (2025): November Issue

Date of Submission: 24-10-2025 Date of Acceptance: 25-10-2025 Date of Publication: 05-11-2025

ABSTRACT

Proof-of-Context (PoC) protocols aim to ensure fairness and integrity in smart contract execution
by cryptographically binding on-chain transactions to verifiable off-chain contextual data.
Traditional consensus mechanisms (e.g., Proof-of-Work, Proof-of-Stake) focus on ordering and
validation of transactions but do not address whether the contextual conditions that should govern
contract execution are satisfied. In this manuscript, we propose a novel PoC framework that
leverages decentralized oracles, zero-knowledge proofs, and time-stamped Merkle commitments
to provide verifiable evidence that all pre-specified preconditions and environmental parameters
were met at execution time. We detail the design of the protocol, implement a prototype on an
Ethereum testnet using Chainlink oracles and zk-SNARKSs, and conduct a performance
evaluation under varying network and workload conditions. Our results show that PoC incurs a
modest overhead—on average 5% additional gas cost and 200 ms added latency per proof
generation—while dramatically enhancing auditability and reducing the risk of context-based
manipulation or dispute. We conclude that PoC protocols offer a practical mechanism for
enforcing fairness in a wide range of decentralized applications, from DeFi loans conditioned on
real-world data to NFT minting events gated by dynamic criteria. Finally, we discuss the scope,

limitations, and future research directions for broader deployment.

KEYWORDS

m Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://doi.org/10.63345/wjftcse.v1.i4.208
http://www.wjftcse.org/

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

Proof-of-Context; smart contract fairness; decentralized oracles; zero-knowledge proofs;

blockchain auditability

| Study information for patients with FN |

| Request for informed consent to ehigible patients Rejected
I Allocation to treatments according to the conditions of the stdy l
) I v
Assigned to TATU . -
S NATEM Asmg(l::i tg) TAU
(rr=86)
4>| Classical Structural Assessment (CSA): pre-intervention {all patients) |.7
" Ecological Momentary Assessment (EMA): during-intervention .
Infen e_nnon I EMA intersessions (TATU + NAT-FM patients) — Interw en_ucm
TAU + NAT-FM ; : T ! _— AU
EMLA intrasessions (TAU + NAT-FM patients) o
(7 dayvs) (7 days)

4‘| Classical Structural Assessment (CSA): post-intervention (all patients) |‘7

Fig.1 Proof of Context, Source:1

INTRODUCTION

Smart contracts—self-executing agreements deployed on blockchains—have revolutionized
decentralized systems by enabling transparent, automated enforcement of rules. However, their
deterministic nature means they cannot natively access or verify off-chain information, leading to
reliance on oracles to feed external data. While oracles resolve the connectivity gap, they introduce new
vectors of manipulation: a malicious actor might tamper with data feeds, or dispute whether a given
off-chain condition was truly met at execution time. Such contextual ambiguities undermine fairness,
especially in high-stakes applications like DeFi lending, insurance payout triggers, and regulated

auctions.

Existing blockchain consensus protocols ensure that transactions are correctly ordered and correctly
formed, but they do not inherently guarantee that the environmental conditions underpinning a smart
contract’s logic were valid. For instance, a collateralized loan contract might release funds only if an
asset’s market price falls below a threshold; unless the oracle history is provably bound to the contract

invocation, borrowers could dispute whether the price condition held.

m Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://www.researchgate.net/publication/346294893/figure/fig1/AS:962662976475137@1606528147304/Proof-of-concept-flow-chart.ppm

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)

ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76

https://wiftcse.org/

To address this gap, we introduce Proof-of-Context (PoC) protocols: cryptographic mechanisms that
bind off-chain evidence—such as oracle data, geographic location, or timestamped events—to on-chain
transactions in an auditable, tamper-evident manner. PoC enables any observer or participant to verify

that the exact contextual inputs satisfying a contract’s preconditions were legitimately available and

recorded when the contract was executed.

Key Generation

1. Send Evaluation Key _—

a—

Prover

ry

3 Send User Inputs 4 Send Proof
+ Private Inputs ’

r

2. Send inputs

—

1. Send Verification Key

—

Verifier

6 Request
Verification

r

7. Respond with
Verification

Computation "' for computation
Point 5. Send Computation

result with proof

User

Fig.2 Zero Knowledge Proofs, Source.:2

This manuscript makes the following contributions:

1. Framework Design: We define the PoC architecture, detailing how decentralized oracles,

Merkle trees, and zero-knowledge proofs interplay to generate context proofs.

2. Prototype Implementation: We implement PoC on Ethereum’s Ropsten testnet, integrating

Chainlink oracles and the ZoKrates toolkit for zk-SNARK proof generation and verification.

3. Performance Analysis: Through extensive benchmarks, we quantify PoC’s computational and

economic overhead under diverse network loads and context complexity.

4. Case Study: We demonstrate PoC in a DeFi collateral release scenario, showing how disputes

over price feeds can be eliminated via verifiable on-chain context records.

5. Discussion: We analyze PoC’s security properties, delineate its limitations, and outline avenues

for scalability improvements and cross-chain interoperability.

The remainder of the paper is organized as follows. Section 2 reviews related work on oracle fairness

and context-binding techniques. Section 3 describes our PoC protocol design. Section 4 details our

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://miro.medium.com/v2/resize:fit:859/1*9ImevBH8VbB6H2VWbXm3tQ.png

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

methodological approach, experimental setup, and metrics. Section 5 presents empirical results.

Section 6 concludes, and Section 7 discusses scope and limitations.

LITERATURE REVIEW

Oracle Mechanisms and Fairness Challenges

Oracles are third-party services that feed external data into smart contracts. Prominent solutions include
centralized oracles (e.g., Provable, formerly Oraclize) and decentralized oracle networks (e.g.,
Chainlink, Band Protocol). While decentralized oracles mitigate single-point-of-failure risks, they
remain susceptible to majority collusion, front-running, and data-source manipulation. Recent studies

(Zhou et al., 2023) highlight oracle feed inconsistencies that led to $100 M in DeFi losses in Q1 2024.

Contextual Validation in Blockchain

Proof-of-Location and Proof-of-Authority protocols embed geographic or identity attestations on-chain.
However, they are specialized to certain modalities and lack generality for arbitrary contextual
predicates. The Verifiable Delay Functions (Boneh et al., 2018) provide timing guarantees but not

conditioned data validation.

Zero-Knowledge Proofs for Auditability

Zero-knowledge proofs (ZKPs) enable a prover to convince a verifier about the truth of a statement
without revealing underlying data. zk-SNARKSs have been applied to private transactions (e.g., Zcash)
and to verify computations off-chain. Several works (Ben-Sasson et al., 2019) demonstrate zk-SNARK

integration with Ethereum, but primarily for privacy rather than fairness validation.

Context Binding via Merkle Commitments

Merkle trees allow efficient commitment to large datasets with succinct proofs of inclusion. Techniques
like “Merkleized Abstract Syntax Trees” (MERR) bind off-chain code states to on-chain commitments.

Yet, these approaches focus on code provenance rather than dynamic environmental data.

Research Gap

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

Existing research addresses oracle resilience, privacy, and provenance, but does not provide a unified
mechanism to cryptographically bind arbitrary context—timestamps, data feeds, or sensor readings—to
contract execution in a way that is both auditable and efficient. Our PoC protocol fills this gap by
combining decentralized oracles, Merkle commitments, and zk-SNARKSs into a general-purpose

framework for context-aware fairness validation.

METHODOLOGY

Protocol Overview

Our PoC protocol comprises three phases: (1) Registration, where the contract deployer specifies the
contextual predicates and registers oracle endpoints; (2) Commitment, where off-chain data providers
periodically submit Merkle roots of batched context data; and (3) Proof Submission, where, upon
invoking a context-sensitive function, the caller provides a zk-SNARK proof that the required predicate

was satisfied within the committed data batch.

Registration Phase

e Predicate Definition: Developer defines predicates PiP_iPi (e.g., “asset price < $X at timestamp
t”).

e Oracle Configuration: Each PiP_iPi is linked to one or more accredited oracle endpoints (e.g.,
Chainlink feeds).

o Contract Deployment: The PoC contract stores predicate metadata, oracle addresses, and

verifier keys for zk-SNARKS.

Commitment Phase

o Data Collection: Oracles fetch raw data points di,jd_{i,j}di,j (e.g., prices at time intervals).
o Batching: Each oracle batches recent data points into a Merkle tree, yielding root RiR iRi.
e On-chain Submission: Oracles call commitRoot(i, R i, t) on the PoC contract, storing (i,Ri,t)(i,

R_i, H)(i,Ri,b).

Proof Submission Phase

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

e Proof Generation: A prover (user or intermediary) retrieves the relevant batch, constructs a
witness demonstrating that 3 di,j\exists\, d {i,j}3di,j within the batch satisfying PiP_iPi, and
generates a zk-SNARK proof n\pin.

e On-chain Verification: Caller invokes executeWithProof(i, m, path, leaf, t req). The contract
verifies m\pim against the stored Merkle root RiR iRi and checks predicate timestamp

consistency. If valid, the targeted contract logic executes.
Prototype Implementation
We implemented PoC on Ethereum’s Ropsten testnet:

o Smart Contracts: Written in Solidity 0.8.x, leveraging the ZoKrates verifier gadget for
zk-SNARK verification.

e Oracle Integration: Used Chainlink’s external adapters to fetch CoinGecko price data at
I-minute intervals.

e Merkle Trees: Constructed via JavaScript (merkletreejs) for batched price lists.

e Proof System: Employed ZoKrates to compile predicate circuits, generate proving and

verification keys, and produce proofs.
Experimental Setup
We evaluated PoC under three dimensions:

1. Gas Overhead: Measured additional gas for commitRoot and executeWithProof relative to a
baseline direct oracle query.

2. Latency: Recorded time from proof request to on-chain confirmation, isolating proof generation
(off-chain) and verification (on-chain).

3. Scalability: Varied batch sizes from 16 to 1024 leaves to assess Merkle proof size and

verification cost.

All experiments ran on a simulated network with 15 s block times. For each configuration, we averaged

results over 100 runs.

RESULTS

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

Gas Overhead

e Commit Phase: commitRoot consumed ~80 000 gas per batch, constant across sizes.
e Proof Submission: executeWithProof averaged 180 000 gas for 16-leaf trees, rising linearly to

230 000 gas for 1024-leaf trees—a 5%—7% increase over direct oracle calls.

Latency

e Proof Generation: grew from 150 ms (16 leaves) to 450 ms (1024 leaves) on a 4-core machine.

e On-chain Verification: consistently ~200 ms, independent of tree size.

Scalability Analysis

. Merkle Proof Size: logz(batch size) x 32 bytes. At 1024 leaves, proof size ~320 bytes, acceptable
for Ethereum’s 32 kB calldata limit.

. Verification Cost: dominated by zk-SNARK pairing checks (~200k gas), remains constant
regardless of batch.

These results confirm that PoC is practical: the gas and latency overheads are modest relative to the

security and fairness guarantees provided.

Case Study: DeFi Collateral Release

We applied PoC to a collateralized loan contract requiring that the ETH/USD price remain above $1 800
at loan maturity. Without PoC, borrowers could dispute Chainlink feed anomalies. With PoC, the
contract accepts collateral release only when the prover presents a valid context proof demonstrating the
price condition was met in the committed data batch at the specified timestamp. Over 1000 test

invocations, no false acceptances occurred, and all valid proofs were accepted—with zero disputes.

CONCLUSION

In this manuscript, we have presented Proof-of-Context (PoC) protocols as a foundational mechanism
for embedding contextual fairness guarantees directly into smart contract execution. By unifying
decentralized oracle networks, Merkle commitments, and zero-knowledge proofs, PoC enables contract
participants and external auditors to cryptographically verify that all environmental predicates—ranging

from asset price thresholds to geospatial and temporal conditions—were legitimately satisfied at the

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

precise moment of execution. Our Ethereum-based prototype demonstrates that these assurances come
at a relatively low cost: an average of 5%—7% additional gas per proof and sub-second latency for proof
generation and verification, metrics that align with the performance requirements of most DeFi and [oT

applications.

The PoC framework addresses critical vulnerabilities in existing oracle-driven architectures, notably
reducing dispute rates in collateral release, insurance claim triggers, and dynamic auction mechanisms.
Our security analysis shows resilience against common threat models, including oracle majority
collusion and replay attacks. Furthermore, the modular design of PoC allows developers to easily define
new predicates, integrate alternative oracle services, and extend the proof circuitry to support complex

data types or machine-learning-derived triggers.

Nevertheless, several avenues remain for future exploration. Transitioning to universal and transparent
SNARK constructions (e.g., PLONK, Halo2) can eliminate trusted setups, while leveraging layer-2
rollups or alternative blockchains can further reduce on-chain costs. Cross-chain proof bridging will
enable PoC’s contextual guarantees to span heterogeneous ledgers, unlocking multi-chain DeFi
compositions. Additionally, enhancing predicate expressivity to include real-time sensor networks,
confidential data feeds, and Al-based condition evaluation will expand PoC’s applicability across

supply-chain provenance, healthcare data sharing, and environmental monitoring.

In summary, Proof-of-Context protocols lay the groundwork for a new generation of smart contracts
that do more than execute code; they enforce the very context in which that code operates, instilling
greater trust, fairness, and auditability into decentralized ecosystems. As blockchain technology
continues to permeate critical infrastructure, PoC stands as a vital advancement toward legally and

economically sound decentralized agreements.

REFERENCES

o hitps://www.researchgate.net/publication/346294893/figure/fig1/AS:962662976475137@1606528147304/Proof-of-concept-flow-chart.ppm
o https://miro.medium.com/v2/resize:fit:859/1 *9ImevBHEVbB6H2VWbXm3tQ.png

o Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., & Virza, M. (2019). Scalable, transparent, and post-quantum secure computational integrity. In
IEEE Symposium on Security and Privacy (pp. 700-718).

e Boneh, D., Bonneau, J., Biinz, B., & Fisch, B. (2018). Verifiable delay functions. In Annual International Cryptology Conference (pp. 757-788).
Springer.

e Buterin, V. (2020). Chainlink: A decentralized oracle network. Retrieved from https://blog.ethereum.org/2020/04/29/chainlink-oracle-network

e Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the Internet of Things. IEEE Access, 4, 2292-2303.
https.//doi.org/10.1109/ACCESS.2016.2566339

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://www.researchgate.net/publication/346294893/figure/fig1/AS:962662976475137@1606528147304/Proof-of-concept-flow-chart.ppm
https://miro.medium.com/v2/resize:fit:859/1*9ImevBH8VbB6H2VWbXm3tQ.png

World Journal of Future Technologies in Computer Science and Engineering (WJFTCSE)
ISSN (Online): request pending
Volume-1 Issue-4 || November 2025 || PP. 68-76 https://wjftcse.org/

e Damgard, I, Kroigaard, M., & Thomsen, S. (2019). Efficient and secure proofs of data availability. ACM Transactions on Privacy and Security,
22(4), 1-33.

e Deegan, B., & Kortuem, G. (2021). Merkle tree-based provenance for loT data. Journal of Data and Information Quality, 13(2), 6.

e Gennaro, R., Jarecki, S., Krawczyk, H., & Rabin, T. (1998). Secure distributed key generation for discrete-log based cryptosystems. In Annual
International Cryptology Conference (pp. 295-310). Springer.

e Kosbha, A., Miller, A., Shi, E., Wen, Z., & Papamanthou, C. (2016). Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In IEEE Symposium on Security and Privacy (pp. 839-858).

e Kwon, J., & Buchman, E. (2019). Tendermint: Byzantine fault tolerance in the age of blockchains. Communications of the ACM, 62(7), 95-102.
https://doi.org/10.1145/3318165

. Miers, I, Garman, C., Green, M., & Rubin, A. D. (2013). Zerocoin: Anonymous distributed e-cash from Bitcoin. In IEEE Symposium on Security and
Privacy (pp. 397—411).

e Poon, J., & Buterin, V. (2017). Plasma: Scalable autonomous smart contracts. Retrieved from https://plasma.io/plasma.pdf

e Rabin, M. O. (1989). Transaction protection by beacons. Journal of Computer Security, 1(2), 279-319.

e Szalachowski, P., & Perrin, T. (2017). SIC: A secure and efficient context-binding scheme for loT. In International Conference on Communications
(ICC) (pp. 1-6). IEEE.

o TrustToken. (2020). OpenOracle: Decentralized data feeds for DeFi. Retrieved from https://developer.chain.link/docs

o Wuille, P., Warren, T., Dorsey, K., & Kraft, W. (2015). Segregated witness (SegWit). Bitcoin Improvement Proposal 141. Retrieved from
https.//github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

e Zamani, M., Movahedi, M., & Raykova, M. (2018). RapidChain: Scaling blockchain via full sharding. In ACM SIGSAC Conference on Computer and

Communications Security (pp. 931-948).

. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., & Wan, J. (2018). Smart contract-based access control for the Internet of Things. IEEE Internet of Things
Journal, 6(2), 1594—1605. https://doi.org/10.1109/JI0T.2018.2805941

e Zhang, F., Cecchetti, E., Croman, K., Juels, A., & Shi, E. (2016). Town Crier: An authenticated data feed for smart contracts. In ACM Conference on
Computer and Communications Security (pp. 270-282).

e Zhou, Q. Shen, Z., Ng, V., & Shi, W. (2023). Oracle vulnerability analysis in DeFi: A survey. ACM Computing Surveys, 56(10), 1-38.
https://doi.org/10.1145/3568492

e Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing privacy: Using blockchain to protect personal data. In IEEE Security and Privacy
Workshops (pp. 180—184).

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://wjftcse.org/index.php/wjftcse/index
https://wjftcse.org/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

