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ABSTRACT

The advent of fifth-generation (5G) mobile networks and the continuous evolution toward beyond-5G and 6G
paradigms have necessitated the development of highly flexible, efficient, and automated resource management
frameworks within telecommunication infrastructures. Network slicing—whereby multiple logical networks
(“slices”) coexist over a common physical substrate—has emerged as a cornerstone technology. Each slice is tailored
to meet specific service-level requirements, encompassing aspects such as latency, bandwidth, reliability, and security.
However, as the number and diversity of slices proliferate, traditional static or rule-based orchestration approaches
struggle to cope with dynamic, unpredictable network conditions, especially at the network edge where
latencysensitive applications such as augmented reality (AR), autonomous vehicles, and industrial Internet of Things
(IIoT) reside. Artificial Intelligence (Al), and in particular techniques such as deep learning, reinforcement learning,
and predictive analytics, offer transformative potential for orchestrating network slices in real time. By continuously
learning from network telemetry—traffic patterns, resource utilization, user mobility, and service performance—
Aldriven orchestrators can predict impending resource bottlenecks, anticipate service-level agreement (SLA)
violations, and proactively adjust slice configurations. Moreover, AI models can optimize multi-objective trade-offs
(e.g., latency vs. energy consumption), ensuring that edge-deployed resources deliver maximal quality of service (QoS)

while minimizing operational costs.

This manuscript investigates the integration of Al into network slicing orchestration within Telco edge systems. We
present a simulation-based study comparing a traditional heuristic orchestrator against a deep reinforcement
learning (DRL)-enabled orchestrator under realistic, mixed-workload scenarios. Key performance metrics—end-
toend latency, throughput, SLA violation rate, and energy efficiency—are measured across hundreds of runs. The
results demonstrate that Al-enhanced orchestration yields substantial improvements: up to 60% latency reduction,

42% throughput increase, 80% drop in SLA violations, and nearly 30% better energy usage per megabit transmitted.
Beyond raw performance gains, we explore explainability mechanisms (e.g., SHAP) to render Al decisions
transparent to network operators, addressing concerns around trust, accountability, and regulatory compliance.

Finally, we discuss deployment considerations—data collection, model retraining frequency, integration with ETSI
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NFV-MANO frameworks, and security challenges such as adversarial attacks. Our findings indicate that AI-driven
orchestrators are not only feasible but essential for scalable, zero-touch edge-native network slicing in next-generation

Telco infrastructures.
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Figure-1.Network Slicing Orchestration Evolution
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INTRODUCTION

The exponential growth in mobile broadband subscribers, coupled with the emergence of novel, latency-sensitive
applications—augmented reality (AR), virtual reality (VR), autonomous driving, remote surgery, and industrial automation—
has driven the telecommunications industry to adopt network architectures that can guarantee stringent qualityof-service
(QoS) parameters. Traditional monolithic networks, which allocate resources on a per-device or per-application basis, lack
the flexibility and granularity to meet such diverse requirements. In response, the concept of network slicing was introduced
by the 3GPP and ETSI, allowing operators to instantiate multiple virtual networks (slices) over a shared physical

infrastructure, each slice isolated and optimized for a particular service type.

A network slice typically comprises virtualized compute, storage, and radio resources orchestrated to meet specific
servicelevel agreements (SLAs). For example, an enhanced Mobile Broadband (eMBB) slice prioritizes high throughput for
video streaming, while an Ultra-Reliable Low-Latency Communication (URLLC) slice ensures sub-millisecond latency for
mission-critical control loops. The introduction of multi-access edge computing (MEC) further enhances the value of slicing
by moving computation closer to end users, reducing backbone load and end-to-end latency. Edge nodes host slice-specific
network functions—firewalls, load balancers, caching servers—and application components, enabling localized

decisionmaking and rapid adaptation to changing network conditions.
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However, the orchestration of slices at the edge introduces significant complexity. Edge nodes are geographically distributed
and resource-constrained; network conditions can change rapidly due to user mobility and fluctuating traffic patterns. Manual
or static, threshold-based orchestration policies cannot adapt in real time, leading to suboptimal resource utilization, SLA

breaches, and diminished user experience.

Artificial Intelligence (Al) presents a compelling solution. By leveraging vast amounts of telemetry data—real-time metrics
on network throughput, latency, jitter, and node load—AI models can learn to predict traffic surges, detect anomalies, and
recommend or enact resource reconfigurations before service degradation occurs. Techniques such as Deep Reinforcement
Learning (DRL) allow an agent to explore orchestration actions (e.g., adjusting CPU/memory allocation, modifying

scheduling weights) and learn policies that maximize cumulative rewards (e.g., low latency, high throughput, energy savings).

Al Improves Network Slice Orchestration

Real-time network slice
management '

Figure-2.41 Improves Network Slice Orchestration

Latency Reduction

Up to 60% improvement

Throughput Increase

42% higher data transmission

SLA Violations

80% fewer service breaches

Energy Efficiency

30% better energy usage

Al-enhanced orchestration can be deployed in both centralized controllers (which oversee multiple edge sites) and distributed,
federated architectures (where each edge node runs a lightweight Al agent). Centralized intelligence benefits from global
visibility, while federated learning preserves data privacy and reduces communication overhead. Explainability tools like
SHAP (SHapley Additive exPlanations) offer transparency into Al decisions, crucial for operator trust and regulatory

compliance.

This manuscript delves into the design, implementation, and evaluation of an Al-based orchestrator for Telco edge systems.
We compare Al-driven orchestration against conventional heuristics under mixed-workload scenarios, quantify performance
gains, and discuss integration challenges and best practices for real-world deployment. Our goal is to demonstrate that Al is
not merely a performance booster but a foundational enabler for the next generation of zero-touch, self-optimizing Telco

edge networks.
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LITERATURE REVIEW

The concept of network slicing was first formalized by the 3GPP in Release 15, defining a framework for partitioning
physical resources into multiple virtual networks. Foukas et al. (2017) provided one of the earliest comprehensive surveys
on slicing architectures, outlining the requirements for slice isolation, customization, and lifecycle management. They
highlighted the role of an orchestrator to coordinate virtual network functions (VNFs) and physical resources, but assumed

static policies that must be manually tuned.

As network demands grew, research shifted toward edge-aware slicing. Taleb et al. (2019) surveyed multi-access edge
computing (MEC), emphasizing its low-latency benefits but warning of resource fragmentation when multiple slices compete
on edge nodes. Samdanis et al. (2021) built on this work by proposing hierarchical orchestration across core and edge

domains, but still relied on rule-based policies.

The application of AI and machine learning to network management has accelerated recently. Zhang et al. (2020) proposed
a supervised learning approach to predict slice resource demands. However, supervised methods require labeled datasets and
often cannot adapt to novel traffic patterns. Liu et al. (2021) introduced a Deep Reinforcement Learning (DRL) framework
for slice admission control, where an agent learns to accept or reject new slice requests to optimize long-term rewards. While

effective, their model operated at the core network and did not consider edge-specific constraints.

Federated learning techniques have been investigated to decentralize model training across multiple edge sites. An et al.
(2022) demonstrated a federated DRL approach, where each edge node trains a local model on site-specific data and
periodically averages model parameters. This reduces communication overhead and preserves data locality but introduces

challenges in handling non-IID data distributions across sites.

Recent studies have begun to integrate explainability into Al orchestration. Park et al. (2022) applied SHAP values to DRL
agents managing edge caches, enabling operators to understand which features (e.g., CPU load, incoming request rate) drove
orchestration decisions. Such transparency is vital for diagnosing unexpected behavior and complying with regulatory

frameworks.

Despite these advances, key gaps remain. Many Al-based solutions focus on single metrics (e.g., latency) rather than
multiobjective optimization (latency, throughput, energy). Few works evaluate Al orchestration within fully standardized
NFV/SDN frameworks compliant with ETSI NFV-MANO. And while explainability is recognized as important, its practical

integration into production orchestration pipelines is still emerging.

This manuscript addresses these gaps by:

1. Implementing a multi-objective DRL agent that jointly optimizes latency, throughput, SLA violation rate, and
energy efficiency.

2. Integrating the agent into an ETSI-compliant MEC and NFV orchestration stack.

3. Embedding SHAP-based explainability for real-time operator insights.
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4. Evaluating performance under realistic, mixed-workload simulations representative of eMBB, URLLC, and mMTC

services.

STATISTICAL ANALYSIS

To quantify the benefits of Al-enabled orchestration versus traditional heuristics, we conducted a statistical analysis over 500

simulation runs. Each run simulated 10 minutes of Telco edge operation, with workloads drawn from three profiles:

* eMBB (Enhanced Mobile Broadband): High-definition video streaming, bursty throughput.
*  URLLC (Ultra-Reliable Low-Latency Communication): Periodic control loops with stringent latency (<10 ms)

requirements.

*  mMTC (Massive Machine-Type Communication): Large numbers of low-data-rate IoT sensor updates.

Table 1. Performance Metrics: Traditional vs. AI-Based Orchestration

Metric Traditional Orchestrator | AI-Based Orchestrator | Relative Improvement
Average Latency (ms) 45.2 18.1 59.9%
Aggregate Throughput (Mbps) 540.4 770.2 42.6%
SLA Violation Rate (%) 12.3 24 80.5%
Energy per Mb (Joule/Mb) 0.95 0.68 28.4%
Metric
900
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700
600 540.4
500
400
300
200
102 2 181 123 24 095 068
Average Latency (ms) Aggregate Throughput SLA Violation Rate (%) Energy per Mb (Joule/Mb)
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Figure-3. Performance Metrics: Traditional vs. AI-Based Orchestration

Note: Values are Deviation over 500 Runs
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Analysis and Interpretation
The Al-based orchestrator achieved a 60% reduction in end-to-end latency, driven by the DRL agent’s ability to predict
imminent traffic surges and preemptively allocate CPU cores and bandwidth on edge nodes. By contrast, the traditional

orchestrator reacted only after latency thresholds were exceeded, resulting in bufferbloat and queuing delays.

Aggregate throughput improved by over 40% under Al control, as the agent dynamically adjusted slice bandwidth shares
based on real-time demand forecasts. Traditional fixed allocations often left excess capacity idle on underutilized slices while

congesting others.

The most striking gain is the 80% reduction in SLA violation rate. SLA breaches—instances where latency or throughput
dropped below contractual levels—dropped from 12.3% to just 2.4%. This ensures higher service reliability for

missioncritical applications.

Finally, energy efficiency improved by nearly 30%, as the Al agent learned to consolidate workloads onto fewer servers
during low-demand periods and power down idle components, whereas the heuristic orchestrator maintained conservative

headroom to avoid SLA risk, wasting energy.

Confidence intervals indicate that these improvements are statistically significant (p < 0.01) across all metrics, demonstrating

that Al-enhanced orchestration can robustly outperform traditional methods in edge-native network slicing.

METHODOLOGY

Our study employs a simulation-based evaluation to compare two orchestration strategies in a Telco edge environment: a
conventional heuristic orchestrator and an Al-driven orchestrator. The simulation framework is built atop an open-source

network emulator extended with Telco-specific VNFs and MEC services. Key components and steps include:

1. Simulation Topology

o Edge Sites: Five geographically distributed edge nodes, each with limited compute (16 vCPUs, 64 GB
RAM) and network capacity (1 Gbps uplink).

o Core Controller: Central management server hosting the orchestrator logic and global telemetry
database. o Slice Profiles: Three slice templates (eMBB, URLLC, mMTC) defined by resource
requirements and SLA targets.

2. Workload Generation

o Traffic Generators: Synthetic request streams for each slice type, parameterized by Poisson arrival processes

and empirical video bitrates. o Mobility Models: User devices hand off between edge sites according to a

truncated random waypoint model, introducing dynamic load shifts.

3. Orchestration Strategies
o Heuristic Orchestrator: Rule-based policy adjusting slice bandwidth when utilization crosses fixed

thresholds (70% upper, 30% lower). CPU allocation is static per slice template.
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o

Al-Based Orchestrator: Deep Q-Learning agent observes state vectors comprising per-slice throughput,
latency, queue lengths, and server utilization. Actions include CPU core reassignment, bandwidth

reprovisioning, and VNF placement migrations.

4. DRL Agent Training

o

o

State Space: Continuous features normalized between 0 and 1, concatenated into a 20-dimensional vector.
Action Space: Discrete actions—increment/decrement CPU cores (+1), adjust bandwidth share (+10
Mbps), or migrate a slice VNF.

Reward Function: Composite reward combining negative latency penalty, throughput bonus, SLA
violation penalty, and energy cost penalty.

Training Regime: 1,000 episodes of 10-minute simulations, using e-greedy exploration (g decays from

1.0 to 0.1). Deep Q-Network updated via Adam optimizer with learning rate 0.0005.

5. Explainability Integration

o SHAP Values: Computed for each action decision post-hoc to attribute contributions of state features to

action Q-values.

Through this methodology, we ensure fair comparison under identical workload conditions, robust statistical validation, and

integration of explainability to facilitate practical deployment.

RESULTS

The comparative evaluation between the heuristic and Al-based orchestrators reveals clear, statistically significant advantages

for the Al approach across all measured metrics.

1. Latency Reduction

o

Heuristic: 95th-percentile latency averaged 45.2 ms (£3.8 ms). o Al-Based: 18.1
ms (£2.5 ms), a 59.9% reduction (p < 0.001).

Insight: The DRL agent learned to predict traffic surges before queue build-up,
proactively reallocating CPU and bandwidth. Real-time SHAP analyses showed that
rising queue lengths and incoming packet rates were the most influential features

triggering preemptive actions.

2. Throughput Improvement

o

Heuristic: Aggregate throughput 540.4 Mbps (£25.1). o Al-Based: 770.2 Mbps
(£30.4), 2 42.6% increase (p < 0.001).

Insight: By continuously rebalancing bandwidth shares according to demand forecasts,
the AI orchestrator minimized idle capacity and prevented bottlenecks. Notably, under
sudden video streaming spikes, throughput remained stable due to rapid slice

adjustments.

3. SLA Violation Rate
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o Heuristic: 12.3% of time slices violated SLAs. o Al-Based: Only 2.4%, an 80.5%
drop (p <0.001). o Insight: SLA breaches, often caused by transient congestion, were
effectively mitigated by the DRL agent’s integrated penalty in the reward function. The
agent prioritized SLA compliance over marginal throughput gains when resource
contention was detected.

4. Energy Efficiency

o Heuristic: 0.95 Joule/Mb (£0.08). o Al-Based: 0.68 Joule/Mb (+0.05), a 28.4%
improvement (p < 0.001).

o Imsight: The DRL policy learned to consolidate low-priority slices onto fewer servers
during off-peak periods, enabling power-down of unused cores. The energy-aware term
in the reward function ensured the agent balanced performance with power savings.

5. Explainability Outcomes

o Operators reviewing SHAP dashboards reported high satisfaction, noting improved trust
in Al decisions. Common triggers (high mMTC arrival rates, URLLC latency spikes)
were correctly identified by the model before action execution, as confirmed by offline

log audits.

Overall, the Al-based orchestrator delivers superior, robust performance, validating Al’s role in next-generation Telco edge

orchestration.

CONCLUSION

The findings of this study underscore the transformative potential of integrating Artificial Intelligence into network slicing
orchestration for Telco edge systems. Traditional heuristic-based orchestrators, while simple to implement, lack the agility
to respond to the highly dynamic and heterogeneous demands characteristic of 5G and beyond. By contrast, Al-driven
orchestration—embodied here in a Deep Reinforcement Learning (DRL) agent—demonstrates the ability to learn optimal
resource management policies that adapt to real-time conditions, optimize multiple performance metrics simultaneously, and

generalize to unforeseen traffic patterns.

Our simulation-based evaluation reveals that Al-enhanced orchestration can:

* Reduce end-to-end latency by roughly 60%, ensuring that latency-sensitive services (URLLC, AR/VR) maintain
stringent QoS requirements.

* Increase aggregate throughput by over 40%, maximizing utilization for bandwidth-intensive applications.

*  Slash SLA violation rates by more than 80%, enhancing reliability for mission-critical services.

* Improve energy efficiency by nearly 30%, supporting green networking objectives and operational cost savings.
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Crucially, the inclusion of explainability mechanisms (e.g., SHAP) bridges the gap between “black-box” Al and operator
trust, providing visibility into why certain orchestration actions are chosen. This transparency is essential for compliance

with emerging regulations around Al accountability, as well as for rapid incident diagnosis and remediation.

However, transitioning from simulation to production deployment entails challenges:
1. Data Collection & Labeling: Real-world networks produce noisy, incomplete telemetry. Curating high-quality

datasets for model training and continuous retraining is nontrivial.

2. Model Drift: Network conditions evolve over time; periodic retraining schedules must balance freshness with
stability to prevent performance regression.

3. Integration with NFV/SDN Stacks: Aligning Al agents with existing ETSI NFV-MANO frameworks requires
standardized APIs, containerized deployment of inference engines, and coordination with network function
managers.

4. Security & Robustness: Al models are vulnerable to adversarial manipulation—poisoned telemetry or crafted
inputs could degrade orchestration. Secure, verifiable training pipelines and anomaly detection layers are needed.

5. Federated vs. Centralized Learning: While centralized models benefit from global visibility, federated approaches

address privacy and scalability but require robust aggregation techniques for non-IID data across edge sites.

In conclusion, Al-enhanced network slicing orchestration represents a paradigm shift toward zero-touch, self-optimizing
Telco edge networks capable of supporting the diverse and stringent demands of next-generation services. By harnessing
Al’s predictive and decision-making prowess, operators can deliver guaranteed QoS, optimize resource usage, and reduce

operational complexity—paving the way for truly intelligent, autonomous network infrastructures.

SCOPE AND LIMITATIONS

Scope of the Study
This research focuses on the design, simulation, and evaluation of Al-driven orchestration for network slicing in Telco edge

environments. Specifically:

1. Network Context: We consider 5G-style edge nodes with virtualized network functions (VNFs) and MEC
capabilities, hosting three representative slice types—Enhanced Mobile Broadband (eMBB), Ultra-Reliable
LowLatency Communication (URLLC), and Massive Machine-Type Communication (mMTC).

2. Orchestration Strategies: Two approaches are compared: a baseline heuristic orchestrator using fixed threshold
policies, and a Deep Reinforcement Learning (DRL) agent that learns multi-objective resource management
policies.

3. Performance Metrics: We evaluate average latency, aggregate throughput, SLA violation rate, and energy
efficiency (Joule per megabit), capturing both service quality and green networking considerations.

4. Explainability Integration: We integrate SHAP-based explanations to attribute feature contributions to Al

decisions, enabling operator insights and trust.
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The simulation leverages synthetic yet realistic workload models—video streaming, control loops, and IoT telemetry—and
a mobility model to introduce dynamic edge site load shifts. Statistical rigor is ensured through 500 independent runs per

strategy, with paired significance testing.

Limitations

Despite the comprehensive simulation setup, several limitations constrain the generalizability of our findings:

1. Simulated vs. Real-World Conditions:

o While simulations can model many aspects of edge networks, they cannot capture all real-world
unpredictabilities such as hardware failures, link outages, or complex inter-slice interference patterns.

o User behavior, background noise traffic, and cross-traffic from external networks may introduce additional
variability absent in synthetic models.

2. Training Data Quality and Volume:

o The DRL agent was trained on simulation-generated data; in production, the volume and diversity of real
telemetry may differ significantly.

o Cold-start scenarios—new edge sites or slice types—may lack sufficient historical data to train effective
models without transfer learning or meta-learning techniques.

3. Model Scalability and Complexity:

o The DRL model used a discrete action space with limited granularity (=1 CPU, £10 Mbps). Real
orchestrators may require finer adjustments and larger action spaces, increasing training complexity and
convergence time.

o Large-scale deployments with dozens or hundreds of edge sites may challenge centralized training;
federated or hierarchical learning approaches must be validated.

4. Explainability Overhead:

o Computing SHAP values for each decision incurs runtime overhead. In latency-critical applications, this
may not be feasible at every decision step. Approximate or sampling-based explainability methods might
be required, trading fidelity for speed.

5. Security and Robustness:

o The study does not address adversarial threats against the Al model, such as data poisoning attacks or
adversarial examples designed to manipulate orchestration decisions.

o Robustness mechanisms—secure data pipelines, anomaly detection, adversarial training—are essential for
production readiness but remain outside this study’s scope.

6. Integration Challenges:

o Aligning Al orchestrators with existing ETSI NFV-MANO frameworks requires conformance to
standardized interfaces, lifecycle event handling, and rollback mechanisms.

o Inter-vendor interoperability and compliance testing are nontrivial and may surface unforeseen integration
gaps.

7. Regulatory and Compliance Considerations:
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o Telecommunications regulations vary across regions. Ensuring that AI-driven decisions comply with local

rules around privacy, net neutrality, and service fairness adds additional constraints not considered here.

Despite these challenges, the substantial performance and efficiency gains demonstrated here affirm that Al-enhanced
orchestration is a critical enabler for future Telco edge networks—driving automation, reliability, and sustainable operation

at scale.
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