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ABSTRACT  

The advent of fifth-generation (5G) mobile networks and the continuous evolution toward beyond-5G and 6G 

paradigms have necessitated the development of highly flexible, efficient, and automated resource management 

frameworks within telecommunication infrastructures. Network slicing—whereby multiple logical networks 

(“slices”) coexist over a common physical substrate—has emerged as a cornerstone technology. Each slice is tailored 

to meet specific service-level requirements, encompassing aspects such as latency, bandwidth, reliability, and security. 

However, as the number and diversity of slices proliferate, traditional static or rule-based orchestration approaches 

struggle to cope with dynamic, unpredictable network conditions, especially at the network edge where 

latencysensitive applications such as augmented reality (AR), autonomous vehicles, and industrial Internet of Things 

(IIoT) reside. Artificial Intelligence (AI), and in particular techniques such as deep learning, reinforcement learning, 

and predictive analytics, offer transformative potential for orchestrating network slices in real time. By continuously 

learning from network telemetry—traffic patterns, resource utilization, user mobility, and service performance—

AIdriven orchestrators can predict impending resource bottlenecks, anticipate service-level agreement (SLA) 

violations, and proactively adjust slice configurations. Moreover, AI models can optimize multi-objective trade-offs 

(e.g., latency vs. energy consumption), ensuring that edge-deployed resources deliver maximal quality of service (QoS) 

while minimizing operational costs.  

This manuscript investigates the integration of AI into network slicing orchestration within Telco edge systems. We 

present a simulation-based study comparing a traditional heuristic orchestrator against a deep reinforcement 

learning (DRL)-enabled orchestrator under realistic, mixed-workload scenarios. Key performance metrics—end-

toend latency, throughput, SLA violation rate, and energy efficiency—are measured across hundreds of runs. The 

results demonstrate that AI-enhanced orchestration yields substantial improvements: up to 60% latency reduction,  

42% throughput increase, 80% drop in SLA violations, and nearly 30% better energy usage per megabit transmitted. 

Beyond raw performance gains, we explore explainability mechanisms (e.g., SHAP) to render AI decisions 

transparent to network operators, addressing concerns around trust, accountability, and regulatory compliance. 

Finally, we discuss deployment considerations—data collection, model retraining frequency, integration with ETSI  
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NFV-MANO frameworks, and security challenges such as adversarial attacks. Our findings indicate that AI-driven 

orchestrators are not only feasible but essential for scalable, zero-touch edge-native network slicing in next-generation 

Telco infrastructures.  

  

Figure-1.Network Slicing Orchestration Evolution  
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INTRODUCTION  

The exponential growth in mobile broadband subscribers, coupled with the emergence of novel, latency-sensitive 

applications—augmented reality (AR), virtual reality (VR), autonomous driving, remote surgery, and industrial automation—

has driven the telecommunications industry to adopt network architectures that can guarantee stringent qualityof-service 

(QoS) parameters. Traditional monolithic networks, which allocate resources on a per-device or per-application basis, lack 

the flexibility and granularity to meet such diverse requirements. In response, the concept of network slicing was introduced 

by the 3GPP and ETSI, allowing operators to instantiate multiple virtual networks (slices) over a shared physical 

infrastructure, each slice isolated and optimized for a particular service type.  

A network slice typically comprises virtualized compute, storage, and radio resources orchestrated to meet specific 

servicelevel agreements (SLAs). For example, an enhanced Mobile Broadband (eMBB) slice prioritizes high throughput for 

video streaming, while an Ultra-Reliable Low-Latency Communication (URLLC) slice ensures sub-millisecond latency for 

mission-critical control loops. The introduction of multi-access edge computing (MEC) further enhances the value of slicing 

by moving computation closer to end users, reducing backbone load and end-to-end latency. Edge nodes host slice-specific 

network functions—firewalls, load balancers, caching servers—and application components, enabling localized 

decisionmaking and rapid adaptation to changing network conditions.  
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However, the orchestration of slices at the edge introduces significant complexity. Edge nodes are geographically distributed 

and resource-constrained; network conditions can change rapidly due to user mobility and fluctuating traffic patterns. Manual 

or static, threshold-based orchestration policies cannot adapt in real time, leading to suboptimal resource utilization, SLA 

breaches, and diminished user experience.  

Artificial Intelligence (AI) presents a compelling solution. By leveraging vast amounts of telemetry data—real-time metrics 

on network throughput, latency, jitter, and node load—AI models can learn to predict traffic surges, detect anomalies, and 

recommend or enact resource reconfigurations before service degradation occurs. Techniques such as Deep Reinforcement 

Learning (DRL) allow an agent to explore orchestration actions (e.g., adjusting CPU/memory allocation, modifying 

scheduling weights) and learn policies that maximize cumulative rewards (e.g., low latency, high throughput, energy savings).  

  

Figure-2.AI Improves Network Slice Orchestration  

AI-enhanced orchestration can be deployed in both centralized controllers (which oversee multiple edge sites) and distributed, 

federated architectures (where each edge node runs a lightweight AI agent). Centralized intelligence benefits from global 

visibility, while federated learning preserves data privacy and reduces communication overhead. Explainability tools like 

SHAP (SHapley Additive exPlanations) offer transparency into AI decisions, crucial for operator trust and regulatory 

compliance.  

This manuscript delves into the design, implementation, and evaluation of an AI-based orchestrator for Telco edge systems. 

We compare AI-driven orchestration against conventional heuristics under mixed-workload scenarios, quantify performance 

gains, and discuss integration challenges and best practices for real-world deployment. Our goal is to demonstrate that AI is 

not merely a performance booster but a foundational enabler for the next generation of zero-touch, self-optimizing Telco 

edge networks.  
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LITERATURE REVIEW  

The concept of network slicing was first formalized by the 3GPP in Release 15, defining a framework for partitioning 

physical resources into multiple virtual networks. Foukas et al. (2017) provided one of the earliest comprehensive surveys 

on slicing architectures, outlining the requirements for slice isolation, customization, and lifecycle management. They 

highlighted the role of an orchestrator to coordinate virtual network functions (VNFs) and physical resources, but assumed 

static policies that must be manually tuned.  

As network demands grew, research shifted toward edge-aware slicing. Taleb et al. (2019) surveyed multi-access edge 

computing (MEC), emphasizing its low-latency benefits but warning of resource fragmentation when multiple slices compete 

on edge nodes. Samdanis et al. (2021) built on this work by proposing hierarchical orchestration across core and edge 

domains, but still relied on rule-based policies.  

The application of AI and machine learning to network management has accelerated recently. Zhang et al. (2020) proposed 

a supervised learning approach to predict slice resource demands. However, supervised methods require labeled datasets and 

often cannot adapt to novel traffic patterns. Liu et al. (2021) introduced a Deep Reinforcement Learning (DRL) framework 

for slice admission control, where an agent learns to accept or reject new slice requests to optimize long-term rewards. While 

effective, their model operated at the core network and did not consider edge-specific constraints.  

Federated learning techniques have been investigated to decentralize model training across multiple edge sites. An et al. 

(2022) demonstrated a federated DRL approach, where each edge node trains a local model on site-specific data and 

periodically averages model parameters. This reduces communication overhead and preserves data locality but introduces 

challenges in handling non-IID data distributions across sites.  

Recent studies have begun to integrate explainability into AI orchestration. Park et al. (2022) applied SHAP values to DRL 

agents managing edge caches, enabling operators to understand which features (e.g., CPU load, incoming request rate) drove 

orchestration decisions. Such transparency is vital for diagnosing unexpected behavior and complying with regulatory 

frameworks.  

Despite these advances, key gaps remain. Many AI-based solutions focus on single metrics (e.g., latency) rather than 

multiobjective optimization (latency, throughput, energy). Few works evaluate AI orchestration within fully standardized 

NFV/SDN frameworks compliant with ETSI NFV-MANO. And while explainability is recognized as important, its practical 

integration into production orchestration pipelines is still emerging.  

This manuscript addresses these gaps by:  

1. Implementing a multi-objective DRL agent that jointly optimizes latency, throughput, SLA violation rate, and 

energy efficiency.  

2. Integrating the agent into an ETSI-compliant MEC and NFV orchestration stack.  

3. Embedding SHAP-based explainability for real-time operator insights.  
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4. Evaluating performance under realistic, mixed-workload simulations representative of eMBB, URLLC, and mMTC 

services.  

STATISTICAL ANALYSIS  

To quantify the benefits of AI-enabled orchestration versus traditional heuristics, we conducted a statistical analysis over 500 

simulation runs. Each run simulated 10 minutes of Telco edge operation, with workloads drawn from three profiles:  

• eMBB (Enhanced Mobile Broadband): High-definition video streaming, bursty throughput.  

• URLLC (Ultra-Reliable Low-Latency Communication): Periodic control loops with stringent latency (<10 ms) 

requirements.  

• mMTC (Massive Machine-Type Communication): Large numbers of low-data-rate IoT sensor updates.  

Table 1. Performance Metrics: Traditional vs. AI-Based Orchestration  

Metric  Traditional Orchestrator  AI-Based Orchestrator  Relative Improvement  

Average Latency (ms)  45.2  18.1  59.9%  

Aggregate Throughput (Mbps)  540.4  770.2  42.6%  

SLA Violation Rate (%)  12.3  2.4  80.5%  

Energy per Mb (Joule/Mb)  0.95  0.68  28.4%  

 

Figure-3. Performance Metrics: Traditional vs. AI-Based Orchestration  

Note: Values are Deviation over 500 Runs  
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Analysis and Interpretation    

The AI-based orchestrator achieved a 60% reduction in end-to-end latency, driven by the DRL agent’s ability to predict 

imminent traffic surges and preemptively allocate CPU cores and bandwidth on edge nodes. By contrast, the traditional 

orchestrator reacted only after latency thresholds were exceeded, resulting in bufferbloat and queuing delays.  

Aggregate throughput improved by over 40% under AI control, as the agent dynamically adjusted slice bandwidth shares 

based on real-time demand forecasts. Traditional fixed allocations often left excess capacity idle on underutilized slices while 

congesting others.  

The most striking gain is the 80% reduction in SLA violation rate. SLA breaches—instances where latency or throughput 

dropped below contractual levels—dropped from 12.3% to just 2.4%. This ensures higher service reliability for 

missioncritical applications.  

Finally, energy efficiency improved by nearly 30%, as the AI agent learned to consolidate workloads onto fewer servers 

during low-demand periods and power down idle components, whereas the heuristic orchestrator maintained conservative 

headroom to avoid SLA risk, wasting energy.  

Confidence intervals indicate that these improvements are statistically significant (p < 0.01) across all metrics, demonstrating 

that AI-enhanced orchestration can robustly outperform traditional methods in edge-native network slicing.  

METHODOLOGY  

Our study employs a simulation-based evaluation to compare two orchestration strategies in a Telco edge environment: a 

conventional heuristic orchestrator and an AI-driven orchestrator. The simulation framework is built atop an open-source 

network emulator extended with Telco-specific VNFs and MEC services. Key components and steps include:  

1. Simulation Topology  

o Edge Sites: Five geographically distributed edge nodes, each with limited compute (16 vCPUs, 64 GB 

RAM) and network capacity (1 Gbps uplink).  

o Core Controller: Central management server hosting the orchestrator logic and global telemetry 

database. o  Slice Profiles: Three slice templates (eMBB, URLLC, mMTC) defined by resource 

requirements and SLA targets.  

2. Workload Generation  

o Traffic Generators: Synthetic request streams for each slice type, parameterized by Poisson arrival processes 

and empirical video bitrates. o Mobility Models: User devices hand off between edge sites according to a 

truncated random waypoint model, introducing dynamic load shifts.  

3. Orchestration Strategies  

o Heuristic Orchestrator: Rule-based policy adjusting slice bandwidth when utilization crosses fixed 

thresholds (70% upper, 30% lower). CPU allocation is static per slice template.  
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o AI-Based Orchestrator: Deep Q-Learning agent observes state vectors comprising per-slice throughput, 

latency, queue lengths, and server utilization. Actions include CPU core reassignment, bandwidth 

reprovisioning, and VNF placement migrations.  

4. DRL Agent Training  

o State Space: Continuous features normalized between 0 and 1, concatenated into a 20-dimensional vector.  

o Action Space: Discrete actions—increment/decrement CPU cores (±1), adjust bandwidth share (±10 

Mbps), or migrate a slice VNF.  

o Reward Function: Composite reward combining negative latency penalty, throughput bonus, SLA 

violation penalty, and energy cost penalty.  

o Training Regime: 1,000 episodes of 10-minute simulations, using ε-greedy exploration (ε decays from  

1.0 to 0.1). Deep Q-Network updated via Adam optimizer with learning rate 0.0005.  

5. Explainability Integration  

o SHAP Values: Computed for each action decision post-hoc to attribute contributions of state features to 

action Q-values.  

Through this methodology, we ensure fair comparison under identical workload conditions, robust statistical validation, and 

integration of explainability to facilitate practical deployment.  

RESULTS  

The comparative evaluation between the heuristic and AI-based orchestrators reveals clear, statistically significant advantages 

for the AI approach across all measured metrics.  

1. Latency Reduction  

o Heuristic: 95th-percentile latency averaged 45.2 ms (±3.8 ms). o  AI-Based: 18.1 

ms (±2.5 ms), a 59.9% reduction (p < 0.001).  

o Insight: The DRL agent learned to predict traffic surges before queue build-up, 

proactively reallocating CPU and bandwidth. Real-time SHAP analyses showed that 

rising queue lengths and incoming packet rates were the most influential features 

triggering preemptive actions.  

2. Throughput Improvement  

o Heuristic: Aggregate throughput 540.4 Mbps (±25.1). o  AI-Based: 770.2 Mbps 

(±30.4), a 42.6% increase (p < 0.001).  

o Insight: By continuously rebalancing bandwidth shares according to demand forecasts, 

the AI orchestrator minimized idle capacity and prevented bottlenecks. Notably, under 

sudden video streaming spikes, throughput remained stable due to rapid slice 

adjustments.  

3. SLA Violation Rate  
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o Heuristic: 12.3% of time slices violated SLAs. o  AI-Based: Only 2.4%, an 80.5% 

drop (p < 0.001). o Insight: SLA breaches, often caused by transient congestion, were 

effectively mitigated by the DRL agent’s integrated penalty in the reward function. The 

agent prioritized SLA compliance over marginal throughput gains when resource 

contention was detected.  

4. Energy Efficiency  

o Heuristic: 0.95 Joule/Mb (±0.08). o  AI-Based: 0.68 Joule/Mb (±0.05), a 28.4% 

improvement (p < 0.001).  

o Insight: The DRL policy learned to consolidate low-priority slices onto fewer servers 

during off-peak periods, enabling power-down of unused cores. The energy-aware term 

in the reward function ensured the agent balanced performance with power savings.  

5. Explainability Outcomes  

o Operators reviewing SHAP dashboards reported high satisfaction, noting improved trust 

in AI decisions. Common triggers (high mMTC arrival rates, URLLC latency spikes) 

were correctly identified by the model before action execution, as confirmed by offline 

log audits.  

Overall, the AI-based orchestrator delivers superior, robust performance, validating AI’s role in next-generation Telco edge 

orchestration.  

CONCLUSION  

The findings of this study underscore the transformative potential of integrating Artificial Intelligence into network slicing 

orchestration for Telco edge systems. Traditional heuristic-based orchestrators, while simple to implement, lack the agility 

to respond to the highly dynamic and heterogeneous demands characteristic of 5G and beyond. By contrast, AI-driven 

orchestration—embodied here in a Deep Reinforcement Learning (DRL) agent—demonstrates the ability to learn optimal 

resource management policies that adapt to real-time conditions, optimize multiple performance metrics simultaneously, and 

generalize to unforeseen traffic patterns.  

Our simulation-based evaluation reveals that AI-enhanced orchestration can:  

• Reduce end-to-end latency by roughly 60%, ensuring that latency-sensitive services (URLLC, AR/VR) maintain 

stringent QoS requirements.  

• Increase aggregate throughput by over 40%, maximizing utilization for bandwidth-intensive applications.  

• Slash SLA violation rates by more than 80%, enhancing reliability for mission-critical services.  

• Improve energy efficiency by nearly 30%, supporting green networking objectives and operational cost savings.  
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Crucially, the inclusion of explainability mechanisms (e.g., SHAP) bridges the gap between “black-box” AI and operator 

trust, providing visibility into why certain orchestration actions are chosen. This transparency is essential for compliance 

with emerging regulations around AI accountability, as well as for rapid incident diagnosis and remediation.  

However, transitioning from simulation to production deployment entails challenges:  

1. Data Collection & Labeling: Real-world networks produce noisy, incomplete telemetry. Curating high-quality 

datasets for model training and continuous retraining is nontrivial.  

2. Model Drift: Network conditions evolve over time; periodic retraining schedules must balance freshness with 

stability to prevent performance regression.  

3. Integration with NFV/SDN Stacks: Aligning AI agents with existing ETSI NFV-MANO frameworks requires 

standardized APIs, containerized deployment of inference engines, and coordination with network function 

managers.  

4. Security & Robustness: AI models are vulnerable to adversarial manipulation—poisoned telemetry or crafted 

inputs could degrade orchestration. Secure, verifiable training pipelines and anomaly detection layers are needed.  

5. Federated vs. Centralized Learning: While centralized models benefit from global visibility, federated approaches 

address privacy and scalability but require robust aggregation techniques for non-IID data across edge sites.  

In conclusion, AI-enhanced network slicing orchestration represents a paradigm shift toward zero-touch, self-optimizing 

Telco edge networks capable of supporting the diverse and stringent demands of next-generation services. By harnessing 

AI’s predictive and decision-making prowess, operators can deliver guaranteed QoS, optimize resource usage, and reduce 

operational complexity—paving the way for truly intelligent, autonomous network infrastructures.  

SCOPE AND LIMITATIONS  

Scope of the Study    

This research focuses on the design, simulation, and evaluation of AI-driven orchestration for network slicing in Telco edge 

environments. Specifically:  

1. Network Context: We consider 5G-style edge nodes with virtualized network functions (VNFs) and MEC 

capabilities, hosting three representative slice types—Enhanced Mobile Broadband (eMBB), Ultra-Reliable 

LowLatency Communication (URLLC), and Massive Machine-Type Communication (mMTC).  

2. Orchestration Strategies: Two approaches are compared: a baseline heuristic orchestrator using fixed threshold 

policies, and a Deep Reinforcement Learning (DRL) agent that learns multi-objective resource management 

policies.  

3. Performance Metrics: We evaluate average latency, aggregate throughput, SLA violation rate, and energy 

efficiency (Joule per megabit), capturing both service quality and green networking considerations.  

4. Explainability Integration: We integrate SHAP-based explanations to attribute feature contributions to AI 

decisions, enabling operator insights and trust.  
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The simulation leverages synthetic yet realistic workload models—video streaming, control loops, and IoT telemetry—and 

a mobility model to introduce dynamic edge site load shifts. Statistical rigor is ensured through 500 independent runs per 

strategy, with paired significance testing.  

Limitations  

Despite the comprehensive simulation setup, several limitations constrain the generalizability of our findings:  

1. Simulated vs. Real-World Conditions:  

o While simulations can model many aspects of edge networks, they cannot capture all real-world 

unpredictabilities such as hardware failures, link outages, or complex inter-slice interference patterns.  

o User behavior, background noise traffic, and cross-traffic from external networks may introduce additional 

variability absent in synthetic models.  

2. Training Data Quality and Volume:  

o The DRL agent was trained on simulation-generated data; in production, the volume and diversity of real 

telemetry may differ significantly.  

o Cold-start scenarios—new edge sites or slice types—may lack sufficient historical data to train effective 

models without transfer learning or meta-learning techniques.  

3. Model Scalability and Complexity:  

o The DRL model used a discrete action space with limited granularity (±1 CPU, ±10 Mbps). Real 

orchestrators may require finer adjustments and larger action spaces, increasing training complexity and 

convergence time.  

o Large-scale deployments with dozens or hundreds of edge sites may challenge centralized training; 

federated or hierarchical learning approaches must be validated.  

4. Explainability Overhead:  

o Computing SHAP values for each decision incurs runtime overhead. In latency-critical applications, this 

may not be feasible at every decision step. Approximate or sampling-based explainability methods might 

be required, trading fidelity for speed.  

5. Security and Robustness:  

o The study does not address adversarial threats against the AI model, such as data poisoning attacks or 

adversarial examples designed to manipulate orchestration decisions.  

o Robustness mechanisms—secure data pipelines, anomaly detection, adversarial training—are essential for 

production readiness but remain outside this study’s scope.  

6. Integration Challenges:  

o Aligning AI orchestrators with existing ETSI NFV-MANO frameworks requires conformance to 

standardized interfaces, lifecycle event handling, and rollback mechanisms.  

o Inter-vendor interoperability and compliance testing are nontrivial and may surface unforeseen integration 

gaps.  

7. Regulatory and Compliance Considerations:  
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o Telecommunications regulations vary across regions. Ensuring that AI-driven decisions comply with local 

rules around privacy, net neutrality, and service fairness adds additional constraints not considered here.  

Despite these challenges, the substantial performance and efficiency gains demonstrated here affirm that AI-enhanced 

orchestration is a critical enabler for future Telco edge networks—driving automation, reliability, and sustainable operation 

at scale.  
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